Задание №1 ЕГЭ по математике базового уровня


Элементарные математические вычисления


В задании №1 ЕГЭ по математике базового уровня необходимо провести элементарные вычисления - сложение, вычитание, деление и умножение дробей. Более того, данное задание аналогично первому заданию ОГЭ по математике, поэтому теория для успешного выполнения одинакова. Поэтому мы перейдем непосредственно к разбору типовых вариантов.


Разбор типовых вариантов заданий №1 ЕГЭ по математике базового уровня


Первый вариант задания

Найдите значение выражения:
Алгоритм решения:
  1. Определить порядок действий.
  2. Выполнить действия в скобках.
  3. Преобразовать смешанное число в неправильную дробь.
  4. Привести дроби в скобках к наименьшему общему знаменателю.
  5. Произвести действия в числителе.
  6. Знаменатель оставить наименьший общий.
  7. Умножить числитель получившейся дроби на 9.
  8. Полученный результат сократить и преобразовать в десятичную дробь.
Решение в общем виде:

Пояснения к решению:

Первым всегда выполняется действие в скобках, в данном случае вычитание.

Преобразуем смешанное число

в неправильную дробь. Для этого умножим целую часть на знаменатель, и прибавим числитель

3 • 15 + 1 = 46

Запишем результат в числитель, знаменатель оставим без изменения.

Действие в скобках примет вид:

Ищем наименьший общий знаменатель для дробей 4/9 и 46/15. 15 не делится на 9, удвоим наибольший знаменатель. 30 не делится на 9. утроим наибольший знаменатель, 45 делится на 9. Следовательно, 45 делится одновременно и на 15, и на 9. То есть 45 – наименьший общий знаменатель дробей 4/9 и 46/15.

Приводим дроби к общему знаменателю – 45. Для этого по основному свойству дроби необходимо и числитель и знаменатель дроби умножить на одно и то же число, чтобы дробь не изменилась. Это число называется дополнительным множителем. Дополнительный множитель к первой дроби - 5 (9*5=45). Чтобы получить в знаменателе первой дроби 45 необходимо умножить на 5 и числитель и знаменатель.

Вторую дробь умножим на 3 (15 • 3=45)

Действие в скобках после преобразования будет выглядеть так:

Произведем вычитание дробей с одинаковыми знаменателями. Для этого в числителе запишем вычитание числителей, а знаменатель оставим без изменений.

Выполним действие за скобками, в данном случае умножение на целое число. Для этого умножим числитель дроби на 9, а знаменатель оставим без изменений. Числитель и знаменатель полученной дроби сократим на 9, то есть разделим и числитель и знаменатель дроби на 9. По основному свойству дроби дробь не изменится.

Минус в числителе выносится за дробную черту.

Полученную дробь преобразуем в десятичную, поделив в столбик.

Не забудьте о знаке «минус» в ответе.

Ответ: 23,6


Второй вариант задания

Найдите значение выражения:

Алгоритм решения:
  1. Определить порядок действий.
  2. Выполнить действие в скобках.
  3. Привести дроби в скобках к наименьшему общему знаменателю.
  4. Выполнить вычитание числителей, знаменатель оставить без изменений.
  5. Выполнить деление. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.
Решение в общем виде:
Пояснения к решению:

Первым ВСЕГДА выполняют действия в скобках, в данном случае вычитание.

Для того чтобы выполнить вычитание дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 4, и на 9. 9 на 4 не делится. Удвоим больший знаменатель: 18 не делится на 4. Утроим больший знаменатель: 27 не делится на 4. Увеличим больший знаменатель в 4 раза: 36 делится и на 9, и на 4 одновременно. Следовательно, 36 – наименьший общий знаменатель для дробей 1/4 и 2/9.

Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.

Найдем дополнительные множители для дробей 1/4 и 2/9. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 1/4 нужно умножить на 9(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36. Дробь 2/9 нужно умножить на 4 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 36.

В результате получим:

Действие в скобках примет вид:

Выполним вычитание дробей с одинаковыми знаменателями. Для этого вычтем из числителя первой дроби числитель второй, результат запишем в числитель. Знаменатель оставим прежним.

Выполним действие за скобками. Для этого числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.

Сократим (разделим и числитель и знаменатель) полученную дробь на 12.

Ответ: 21


Третий вариант задания

Найти значение выражения:

Алгоритм решения:
  1. Определить порядок действий.
  2. Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.
  3. Перевести смешанное число в неправильную дробь.
  4. Привести полученные дроби к наименьшему общему знаменателю.
  5. Выполните сложение дробей с одинаковыми знаменателями. Для этого сложить числители, результат записать в числитель, знаменатель оставить без изменений.
  6. Выполнить деление.
  7. Перевести смешанное число в неправильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.
  8. Числитель первой дроби умножить на знаменатель второй – записать в числитель. Знаменатель первой дроби умножить на числитель второй результат записать в знаменатель.
  9. Сократить получившуюся дробь.
  10. Привести результат к десятичному виду.
Решение в общем виде:

Пояснения к решению:

Первым ВСЕГДА выполняют действия в скобках, в данном случае сложение.

Нужно сложить смешанное число и правильную дробь. Для этого целую часть умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним. Переведем смешанное число в неправильную дробь:

Действие в скобках примет вид:

Для того, чтобы выполнить сложение дробей с разными знаменателями, необходимо привести их к наименьшему общему знаменателю. Сделаем это путем подбора. Необходимо найти число, которое одновременно делится и на 5, и на 7. 7 на 5 не делится. Удвоим больший знаменатель: 14 не делится на 5. Утроим больший знаменатель: 21 не делится на 5. Увеличим больший знаменатель в 4 раза: 28 не делится 5. Увеличим больший знаменатель в 5 раз: 35 делится одновременно и на 5, и на 7. Следовательно, 35 – наименьший общий знаменатель для дробей 9/5 и 3/7.

Примечание. Метод подбора удобен, если числа небольшие. В противном случае нужно искать НОК по алгоритму.

Найдем дополнительные множители для дробей 9/5 и 3/7. По основному свойству дроби, если и числитель, и знаменатель дроби умножить на одно и то же число, то дробь не изменится. Дробь 9/5 нужно умножить на 7(и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35. Дробь 3/7 нужно умножить на 5 (и числитель, и знаменатель), чтобы в знаменателе получился наименьший общий знаменатель 35.

В результате получим:

Действие в скобках примет вид:

Выполним сложение дробей с одинаковыми знаменателями. Для этого сложим числители, результат запишем в числитель. Знаменатель оставим прежним.

Выполним действие за скобками. Переведем смешанное число в неправильную дробь, для этого целую часть нужно умножить на знаменатель и прибавить числитель, результат записать в числитель, а знаменатель оставить прежним.

Выполнить деление дробей. Числитель первой дроби нужно умножить на знаменатель второй, результат записать в числитель; знаменатель первой дроби умножить на числитель второй, результат записать в знаменатель.

Сократим (разделим и числитель, и знаменатель на одно и то же число) полученную дробь на 39.

Переведем полученную дробь в десятинную.

Ответ: 8,75


Вариант первого задания из ЕГЭ 2017 года (1)

Найдите значение выражения:

(6,7 − 3,2) ⋅ 2,4

В данном случае первым действием мы выполняем вычитание в скобках, а затем производим умножение:

6,7 − 3,2 = 3,5

3,5⋅ 2,4 = 8,4

Отдельно остановлюсь на последнем действии. Его можно вычислить умножением в столбик, либо посчитать устно, воспользовавшись следующими логическими операциями:

2,4 ⋅ 3 + 2,4 ⋅ 0,5 = 2  ⋅ 3 + 0,4  ⋅ 3 + 2,4/2 = 6 + 1,2 +1,2 = 8,4

Ответ: 8,4


Вариант первого задания из ЕГЭ 2017 года (2)

 Найдите значение выражения:

ЕГЭ по математике 1 задание

В данном случае необходимо выполнить сложение обыкновенных дробей. Общий знаменатель для дробей в скобках - 15 (если вы забыли как определять общий знаменатель, смотрите здесь). Первую дробь домножаем на 5, вторую на 3. Получаем:

(5 + 3)/15

После сложения:

8/15

Теперь выполняем умножение:

8•6/15 = 48/15

В таком варианте дробь в ответ записать мы не можем, выделяем сначала целую часть, это 3 (45/15=3), в остатке получим:

3/15

После сокращения на 3:

1/5

и перевода в десятичный вид:

1/5 = 20/100 = 2/10 = 0,2

Не забываем про целую часть и получаем ответ:

3,2

Ответ: 3,2