Разбор и решение задания №22 ОГЭ по математике


Текстовая задача


В двадцать втором задании необходимо решить задачу, составив уравнение с неизвестными. Ниже мы приводим алгоритмы решения типовых вариантов.


Разбор типовых вариантов заданий №22 ОГЭ по математике


Первый вариант задания

Первый велосипедист выехал из посёлка по шоссе со скоростью 21 км/ч. Через час после него со скоростью 15 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого.

Алгоритм решения задачи:
  1. Введем неизвестную величину: скорость третьего.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Выясняем, на какой вид движения эта задача.
  4. Используя условие, формулы времени или скорости, выражаем через неизвестную величину все остальные.
  5. Исходя из условия, составляем равенство и преобразуем его.
  6. Решаем уравнение.
  7. Определяем величины, которые еще нужно найти.
  8. Записываем ответ.
Решение:

1. Обозначим через x км/ч скорость третьего велосипедиста.

2. Составим таблицу их краткого условия:

 v, км/ч

t, ч

S, км

1 велосипедист

21

На 2 ч раньше всех

 
2 велосипедист

15

На 1 ч раньше третьего

 
3 велосипедист

х

  

3. Задача на движение водном направлении, значит, для определения совместной скорости (сближения), необходимо из большей скорости вычитать меньшую. Наибольшая скорость была у третьего велосипедиста, потому что он догонял двух других.

4. Перед тем, как выехал третий велосипедист, первый двигался уже 2 часа. За это время он проехал 42 км, а второй проехал 15 км, поскольку был в пути 1 час. Совместная скорость третьего и второго велосипедистов равна (x-15) км/ч. так как они движутся в одном направлении. Третий велосипедист догнал второго спустя http://self-edu.ru/htm/2018/oge2018_36/files/1_22.files/image001.gif  ч после своего выезда.

Совместная скорость третьего и первого велосипедистов равна (x-21)км/ч. Третий велосипедист догнал первого через http://self-edu.ru/htm/2018/oge2018_36/files/1_22.files/image002.gif  ч после своего выезда из поселка.

По условию третий велосипедист догнал первого спустя 9 ч после того, как догнал второго.

5. Исходя из этого, составим равенство:

http://self-edu.ru/htm/2018/oge2018_36/files/1_22.files/image003.gif ,

Преобразуем полученное уравнение:

http://self-edu.ru/htm/2018/oge2018_36/files/1_22.files/image004.gif

6. Получили квадратное уравнение. Решим его:

http://self-edu.ru/htm/2018/oge2018_36/files/1_22.files/image005.gif

По условию скорость третьего велосипедиста была наибольшей, значит, второй корень не удовлетворяет условию. Получаем. Что решением будет x = 25 км/ч.

Ответ: 25


Второй вариант задания

Первый велосипедист выехал из посёлка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 10 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 5 часов после этого догнал первого.

Алгоритм решения задачи:
  1. Введем неизвестные величины: скорость третьего и время его движения.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
  4. Исходя из условия, составляем равенства.
  5. Составляем и решаем систему уравнений.
  6. Определяем величины, которые еще нужно найти.
  7. Записываем ответ.
Решение:

1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста.

2. Составим таблицу данных условия:

 v, км/ч

t, ч

s, км

1 велосипедист

15

t +7

 
2 велосипедист

10

t +1

 
3 велосипедист

х

t

 

3. До места встречи со вторым велосипедистом третий проехал x·t км.

Скорость второго велосипедиста 10 км/ч. В пути он находился t + 1 часов к моменту встречи с третьим велосипедистом. Тогда в момент встречи велосипедисты находились на расстоянии 10·(t + 1) км от поселка. Расстояния эти одинаковы, значит, x·t = 10·(t + 1).

Первого велосипедиста третий догонит через t + 5 ч – время, за которое он догнал первого велосипедиста после второго, тогда до места встречи с первым велосипедистом третий проехал x·(t + 5) км.

Первый велосипедист ехал со скоростью 15 км/ч и был в пути до встречи с третьим t + 7 часов, потому как выехал он на 2 часа раньше. Расстояние, которое проехал первый велосипедист, равно 15·(t + 7) км.

Получаем еще одно равенство: x·(t + 5) = 15·(t + 7)

4. Составляем систему уравнений:

Задание22в2_1

5. Решаем полученную систему, преобразовав каждое из уравнений:

Задание22в2_2

Вычитаем из второго уравнение первое, получаем

5x = 5t + 95

x = t + 19

Подставляем вместо x в первое уравнение системы правую часть равенства и решаем полученное уравнение.

(t + 19)·t = 10t + 10

t2 + 19t = 10t + 10

t2 + 9t – 10 = 0

По формуле дискриминанта и корней:

D = b2 – 4ac

D = 92 — 4·1·(-10) = 81 + 40 = 121

Задание22в2_3

Первый ответ не может удовлетворять условию задачи, поскольку время не может иметь отрицательных значений. Следовательно,

x = t + 19 = 1 + 19 = 20

Скорость третьего велосипедиста 20 км/ч.

Ответ: 20


Третий вариант задания

Первый велосипедист выехал из посёлка по шоссе со скоростью 24 км/ч. Через час после него со скоростью 21 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого.

Алгоритм решения задачи:
  1. Введем неизвестные величины: скорость третьего и время его движения.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
  4. Исходя из условия, составляем равенства.
  5. Составляем и решаем систему уравнений.
  6. Определяем величины, которые еще нужно найти.
  7. Записываем ответ.
Решение:

1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста.

2. Составим таблицу данных условия:

 v, км/ч

t, ч

s, км

1 велосипедист

24

t +9

 
2 велосипедист

21

t +1

 
3 велосипедист

х

t

 

3. До места встречи со вторым велосипедистом третий проехал x·t км.

Второй велосипедист до момента, когда его догонит третий велосипедист, двигался t + 1 часов . Он проехал до места встречи 21·(t + 1) км.

Расстояния, пройденные велосипедистами, одинаковы. Получим первое равенство x·t = 21·(t + 1).

Третий велосипедист до момента встречи с первым велосипедистом после встречи о вторым, ехал t + 9 ч тогда до места встречи с первым велосипедистом он проехал расстояние x·(t + 9) км.

Первый велосипедист до встречи с третьим ехал t + 11 часов, поскольку до момента выезда третьего, уже проехал 2 часа. До места встречи он проехал 24·(t + 11) км.

Расстояния одинаковы. Тогда получим еще одно равенство: x·(t + 9) = 24·(t + 11)

Составим систему уравнений для решения задачи:

Задание22в3_1

Решим ее, раскрыв скобки и преобразовав каждое уравнение:

Задание22в3_2

Далее используем метод вычитания, откуда получим:

9x = 3t + 243

3x = t + 81

Задание22в3_3

Подставив выражение для x в первое уравнение:

Задание22в3_4

Получили квадратное уравнение.

t2 + 81t = 63t + 63

Решим его:

t2 + 18t – 63 = 0

D = b2 – 4ac

D = 182 — 4·1·(-63) = 324 + 252 = 576

Задание22в3_5

Первое значение не подходит, поскольку время по условию не может иметь отрицательные значения. Значит,

Задание22в3_6

Таким образом, скорость третьего велосипедиста 28 км/ч.

Ответ: 28


Вариант двадцать второго задания 2017

Рыболов в 5 часов утра на моторной лодке отправился от пристани против течения реки, через некоторое время бросил якорь, 2 часа ловил рыбу и вернулся обратно в 10 часов утра того же дня. На какое расстояние от пристани он отплыл, если скорость реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?

Пусть искомое расстояние равно x км. Скорость лодки при движении против течения равна 4 км/ч, при движении по течению равна 8 км/ч. Время, за которое лодка доплывёт от места отправления до места назначения и обратно, равно

22часа.

Из условия задачи следует, что это время равно 3 часам. Составим уравнение:

221

Решая уравнение, получаем x = 8.

Ответ: 8