Разбор и решение задания №24 ОГЭ по математике


Задачи с треугольниками


Разбор типовых вариантов заданий №24 ОГЭ по математике


Первый вариант задания

Углы В и С треугольника ABC равны соответственно 71° и 79°. Найдите ВС, если радиус окружности, описанной около треугольника ABC, равен 8.

Алгоритм решения:
  1. Делаем чертеж по условию задания.
  2. Находим угол А в данном треугольнике.
  3. Используем следствие из теоремы синусов для треугольника АВС
  4. Определяем ВС.
  5. Записываем ответ.
Решение:

1. Делаем чертеж, удовлетворяющий условию задачи.

http://self-edu.ru/htm/2018/oge2018_36/files/1_24.files/image001.jpg

2. Определим угол А: ∠А=1800 —710—790 = 300.

3. Пусть R — радиус описанной окружности, тогда по следствию из теоремы синусов получаем:

http://self-edu.ru/htm/2018/oge2018_36/files/1_24.files/image002.gif

4. Тогда, при подстановке в равенство полученных данных, получаем: ВС равно произведению сторон АВ и АС на синус угла А, который равен 300. Следовательно ВС=2∙8∙0,5=8.

Ответ: 8.


Второй вариант задания

Углы В и С треугольника ABC равны соответственно 72° и 78°. Найдите ВС, если радиус окружности, описанной около треугольника ABC, равен 17.

Алгоритм решения:
  1. Делаем чертеж по условию задания.
  2. Находим угол А в треугольнике.
  3. Используем следствие из теоремы синусов для треугольника АВС.
  4. Определяем ВС.
  5. Записываем ответ.
Решение:

1. Делаем чертеж, удовлетворяющий условию задачи.

http://self-edu.ru/htm/2018/oge2018_36/files/1_24.files/image001.jpg

2. Рассматриваем треугольник ABC. В нем определяем угол A:

∠А=1800—∠В —∠С, откуда

∠А=1800 —710—790 = 300.

3. По теореме синусов и следствию из нее:

http://self-edu.ru/htm/2018/oge2018_36/files/2_24.files/image003.gif

где R – радиус описанной окружности.

Имеем:

http://self-edu.ru/htm/2018/oge2018_36/files/2_24.files/image004.gif

4. Определяем ВС из полученного равенства:

http://self-edu.ru/htm/2018/oge2018_36/files/2_24.files/image005.gif

Ответ: 17.


Третий вариант задания

Углы B и C треугольника ABC равны соответственно 66° и 84°. Найдите ВС, если радиус окружности, описанной около треугольника ABC, равен 15.

Алгоритм решения:
  1. Делаем чертеж по условию задания.
  2. Определяем угол А.
  3. Используем следствие из теоремы синусов для треугольника АВС.
  4. Определяем ВС.
  5. Записываем ответ.
Решение:

1. Делаем чертеж, соответствующий условию задания.

http://self-edu.ru/htm/2018/oge2018_36/files/1_24.files/image001.jpg

2. Найдем угол А треугольнике ABC:

http://self-edu.ru/htm/2018/oge2018_36/files/3_24.files/image001.gif

3. Радиус R описанной окружности вокруг треугольника связан с длиной BC и синусом угла A выражением, которое является следствием теоремы синусов:

http://self-edu.ru/htm/2018/oge2018_36/files/3_24.files/image003.gif

Отсюда получаем:

http://self-edu.ru/htm/2018/oge2018_36/files/3_24.files/image004.gif

Ответ: 15.


Четвертый вариант задания

Биссектрисы углов А и В при боковой стороне АВ трапеции ABCD пересекаются в точке F. Найдите АВ, если AF = 24, BF = 18.

Алгоритм решения:
  1. Делаем чертеж.
  2. Рассматриваем углы трапеции и проведенные биссектрисы.
  3. Определяем вид треугольника AFB.
  4. Находим длину АВ.
  5. Записываем ответ.
Решение:

1. Выполняем рисунок, согласно требованиям задачи:

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image001.jpg

2. У трапеции ABCD стороны AB и CD основания, значит, они параллельны. Прямая АВ является секущей параллельных прямых, которые содержат основания. Следовательно, http://self-edu.ru/htm/oge2016_36/files/33_24.files/image003.gif , поскольку они являются внутренними односторонними.

По построению AF и BF являются биссектрисами внутренних односторонних углов. Тогда сумма углом BAF и FBA определяется так:

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image004.gif

3. Тогда в треугольнике ABF угол AFB равен:

∠ AFB =1800—(∠BAF —∠FBA)= 1800 – 900

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image005.gif

Таким образом, треугольник AFB является прямоугольным, причем AB – гипотенуза

4. Воспользуемся теоремой Пифагора для ее вычисления:

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image006.gif

Ответ:30.


Пятый вариант задания

Биссектрисы углов А и В при боковой стороне АВ трапеции ABCD пересекаются в точке F. Найдите АВ, если AF = 24, BF = 7.

Алгоритм решения:
  1. Делаем чертеж.
  2. Рассматриваем углы трапеции и проведенные биссектрисы.
  3. Определяем вид треугольника AFB.
  4. Находим длину АВ.
  5. Записываем ответ.
Решение:

1. Выполняем соответствующий чертеж:http://self-edu.ru/htm/oge2016_36/files/33_24.files/image001.jpg

2. Трапеция ABCD имеет основаниями стороны ВС и AD, значит, они параллельны. Тогда в ней внутренние односторонние при пересечении прямых, которые содержат эти основания, секущей АВ. Следовательно, они удовлетворяют равенству: http://self-edu.ru/htm/oge2016_36/files/33_24.files/image003.gif .

3. По построению, заданному условием задачи AF и BF являются биссектрисы данных углов. Тогда в треугольнике ABF

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image004.gif

Отсюда получаем:

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image005.gif

Таким образом, треугольник AFB прямоугольный, а сторона AB – его гипотенуза.

4. Используем теорему Пифагора:

Отсюда АВ=25.

Ответ 25.


Шестой вариант задания

Биссектрисы углов А и В при боковой стороне АВ трапеции ABCD пересекаются в точке F. Найдите АВ, если AF = 20, BF = 15.

Алгоритм решения:
  1. Делаем чертеж.
  2. Рассматриваем углы трапеции и проведенные биссектрисы.
  3. Определяем вид треугольника AFB.
  4. Находим длину АВ.
  5. Записываем ответ.
Решение:

1. Выполняем рисунок, соответствующий данному условию.

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image001.jpg

2. Рассмотрим трапецию ABCD. В ней http://self-edu.ru/htm/oge2016_36/files/33_24.files/image002.gif как основания. Углы А и В составляют в сумме 1800, как углы при основаниях. Отсюда следует, что http://self-edu.ru/htm/oge2016_36/files/33_24.files/image003.gif  как соседние при двух основаниях. По условию лучи AF и BF – биссектрисы этих углов, тогда их сумма

http://self-edu.ru/htm/oge2016_36/files/33_24.files/image004.gif

3. Рассматриваем треугольник ABF. В нем угол http://self-edu.ru/htm/oge2016_36/files/33_24.files/image005.gif по свойству углов треугольника, т.е. построенный треугольник AFB – прямоугольный. И гипотенузой в нем является сторона AB.

4. Вычислим сторону по теореме Пифагора: АВ2 = AF2 + BF2

Следовательно, АВ=25.

Ответ: 25.