Задание №5 ЕГЭ по математике базовый уровень


Значение выражений


В задании №5 ЕГЭ по математике базового уровня нам необходимо вычислить значение выражения, пользуясь различными правилами: формулами сокращенного умножения, знаниями тригонометрии, свойствами логарифмов и другими.


Теория к заданию №5


 В данном задании, кроме операций со степенями, о которых мы говорили в прошлых заданиях, необходимо помнить формулы сокращенного умножения:

формулы сокращенного умножения

Кроме этого, очень часто встречаются задания на знания свойств логарифма:

свойства логарифма

Полезными будут представления о тригонометрической окружности, по которой можно определять знаки тригонометрических функций:

тригонометрическая окружность


Разбор типовых вариантов заданий №5 ЕГЭ по математике базового уровня


 Первый вариант задания

Найдите значение выражения  image001

Алгоритм выполнения задания:
  1. Представим угол 390° с учетом периодичности функции tg меньшим углом.
  2. Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
  3. Выполним умножение.
Решение:

Функция tg является периодической с периодом 180°, то есть каждый раз при увеличении или уменьшении угла на 180° значение tg повторяется.

То есть tg α = tg (α + 180°) = tg (α - 180°)

tg 390° = tg (390° - 180°) = tg 210° = tg (210° - 180°) = tg 30°

Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.

tg 30° = √3/3

Подставим найденное значение в данное выражение.

20 · √3 · (√3/3) = (20 · √3 · √3)/3 = (20 · 3)/3 = 20

Решение в общем виде:

Вычислим выражение, учитывая, что функция тангенс периодическая с периодом π радиан или 180°. Следовательно, угол 390° эквивалентен углу

image002

и получаем выражение:

image003

Ответ: 20.


Второй вариант задания

Найдите значение выражения  image001

Алгоритм выполнения задания:
  1. Представим угол 420° с учетом периодичности функции tg меньшим углом.
  2. Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.
  3. Выполним умножение.
Решение №1:

Функция tg является периодической с периодом 180°, то есть каждый раз при увеличении или уменьшении угла на 180° значение tg повторяется.

То есть tg α = tg (α + 180°) = tg (α - 180°)

tg 390° = tg (420° - 180°) = tg 240° tg (240° - 180°) = tg 60°

Найдем таблице значений тригонометрических функций (в справочных материалах) значение tg полученного угла.

tg 60° = √3

Подставим найденное значение в данное выражение.

-50 · √3 · √3 = -50 · 3 = -150

Решение №5:

Заметим, что функция тангенс периодическая с периодом π радиан или 180°. Поэтому, тангенс угла 420° эквивалентен тангенсу угла в

image002 ,

получаем:

image003

Ответ: -150.


Третий вариант задания

Найдите значение выражения  image001

Алгоритм выполнения задания:
  1. Объединим подкоренные выражения под один корень.
  2. Внесем под корень дробь.
  3. Сократим дробь под корнем.
  4. Представим произведение под корнем в виде произведения вторых степеней.
  5. Вынесем из под корня множители.
  6. Выполним умножение.
Решение:

Объединим подкоренные выражения под один корень. Имеем право так сделать использовав, свойство квадратного корня.

5/3 · √27 · √3 = 5/3 · √(27 · 3)

Внесем под корень дробь.

Корень квадратный, следовательно, чтобы внести дробь под знак корня нужно возвести ее в квадрат. То есть умножить сам на себя числитель и знаменатель.

(5/3)2 = (5 · 5)/(3 · 3)

Сократим дробь под корнем на три дважды.

Представим произведение под корнем в виде произведения вторых степеней.

Вынесем из под корня множители и выполним умножение.

Решение в общем виде:

Ответ: 15.


Пятый вариант задания (демонстрационный вариант 2018)

Найдите cos α, если sin α = 0,8 и 90° ‹ α ‹ 180°.

Алгоритм выполнения задания:
  1. Запишем основное тригонометрическое тождество.
  2. Подставим в основное тригонометрическое тождество все известные данные.
  3. Решим полученное уравнение относительно cos α.
  4. Выбрать корни, подходящие к условию задания.
Решение:

Запишем основное тригонометрическое тождество.

sin2 α + cos2 α = 1

Подставим в основное тригонометрическое тождество все известные данные.

0,82 + cos2 α = 1

Решим полученное уравнение относительно cos α.

cos2 α – неизвестное слагаемое. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.

cos2 α = 1 - 0,82

Чтобы найти вторую степень числа нужно число умножить само на себя.

0,82 = 0,8 · 0,8 = 0,64

cos2 α = 1 - 0,82 1 - 0,64 = 0,36

cos α = √0,36

cos α = 0,6 или -0,6

Условие 90° ‹ α ‹ 180° означает, что -1 ‹ соs α ‹ 0.

Следовательно данному условию удовлетворяет только один корень -0,6.

Ответ: -0,6.

 


Вариант пятого задания 2017 года (1)

Найдите значение выражения (2√13 −1)(2√13 +1).

В данном задании необходимо сразу заметить формулу сокращенного умножения - разность квадратов (последняя формула сокращенного умножения в теории выше). После этого, решение задания сводится к следующему:

(2√13 −1)(2√13 +1) = (2√13)2 - 1 = 4 • 13 - 1 = 51

Ответ: 51


Вариант пятого задания 2017 года (2)

Найдите значение выражения 5log56+1 .

Сначала вспомним свойства степеней и разложим выражение следующим образом:

5log56 + 51

Затем вспомним определение и свойство логарифма - это вторая строчка из нашей теории:

 Получим:

6+5 = 11

Ответ: 11