Задание №8 ЕГЭ по математике базовый уровень


Прикладная геометрия


В задании №8 ЕГЭ по математике нас ждут задания из области прикладной геометрии. Задачи простые на знания основных понятий, адаптированные под реальные жизненные ситуации. Перейдем к разбору и решению типовых заданий №8.


Разбор типовых вариантов заданий №8 ЕГЭ по математике базового уровня


Первый вариант задания

Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота h1 перил равна 1,25 м, а наибольшая высота h2 равна 2,25 м. Ответ дайте в метрах.

          image001

Алгоритм выполнения задания:
  1. Определить, что за фигура на рисунке.
  2. Вспомнить определение средней линии трапеции.
  3. Записать формулу для нахождения средней линии трапеции.
  4. Подставить данные.
  5. Вычислить среднюю линию трапеции.
Решение:

Определим, что за фигура на рисунке. Для этого вспомним определение трапеции.

Четырёхугольник, у которого две противоположные стороны параллельны, а другие две не параллельны, называется трапецией.

Стороны h1 и h2 параллельны, остальные две стороны не параллельны. Значит перед нами трапеция. Стороны h1 и h2 называются основаниями трапеции.

Если перевернуть рисунок, то получим трапецию в более привычном виде.

Вспомним определение средней линии трапеции.

Средняя линия трапеции - отрезок соединяющий середины боковых сторон и расположен параллельно к основаниям.

По условию столб l закреплен посередине, следовательно, l – средняя линия трапеции.

Запишем формулу для нахождения средней линии трапеции.

Формулу нахождения средней линии трапеции можно найти в справочных материалах (полусумма оснований).

Теорема. Средняя линия трапеции параллельна каждому из ее оснований и равна их полусумме.

То есть l = ( h1 + h2 )/2

Подставим данные и вычислим.

l = (1,25 м + 2,25 м)/2 = (3,5 м)/2 = 1,75 м

image003

Примечание: Десятичные дроби складывают столбиком, записав запятую под запятой.

Ответ: 1,75.

Решение в общем виде:

Столб длиной l представляет собой среднюю линию трапеции с основаниями h1 и h2, поэтому длину этого столба можно вычислить по формуле средней линии трапеции как

image002

Выполняем деление 3,5 на 2, имеем:

image003

Ответ: 1,75.


Второй вариант задания

Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота h1 перил равна 2,1 м, а наибольшая высота h2 равна 3,1 м. Ответ дайте в метрах.

image001

Алгоритм выполнения задания:
  1. Определить, что за фигура на рисунке.
  2. Вспомнить определение средней линии трапеции.
  3. Записать формулу для нахождения средней линии трапеции.
  4. Подставить данные.
  5. Вычислить среднюю линию трапеции.
Решение:

Определим, что за фигура на рисунке. Для этого вспомним определение трапеции.

Четырёхугольник, у которого две противоположные стороны параллельны, а другие две не параллельны, называется трапецией.

Стороны h1 и h2 параллельны, остальные две стороны не параллельны. Значит перед нами трапеция. Стороны h1 и h2 называются основаниями трапеции.

Если перевернуть рисунок, то получим трапецию в более привычном виде.

Вспомним определение средней линии трапеции.

Средняя линия трапеции - отрезок соединяющий середины боковых сторон и расположен параллельно к основаниям.

По условию столб l закреплен посередине, следовательно, l – средняя линия трапеции.

Запишем формулу для нахождения средней линии трапеции.

Формулу нахождения средней линии трапеции можно найти в справочных материалах.

Теорема. Средняя линия трапеции параллельна каждому из ее оснований и равна их полусумме.

То есть l = ( h1 + h2 )/2

Подставим данные и вычислим.

l = (2,1 м + 3,1 м)/2 = (5,2 м)/2 = 2,6 м

Примечание: Десятичные дроби складывают столбиком, записав запятую под запятой. В данном случае удобно устно сложить целые части и дробные.

Ответ: 2,6.

Решение в общем виде:

Столб представляет собой среднюю линию трапеции с основаниями h1 и h2, поэтому длину столба l можно найти по формуле средней линии трапеции:

image002  м.

Ответ: 2,6.


Третий вариант задания

План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м х 1 м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

image001

Алгоритм выполнения задания:
  1. Определить что за фигура на рисунке.
  2. Записать формулу нахождения площади данной фигуры.
  3. Определить по чертежу все необходимые данные.
  4. Вычислить площадь участка.
Решение:

Определим, что за фигура на рисунке.

Видно, что у данного четырехугольника две противоположные стороны параллельны.

Четырёхугольник, у которого две противоположные стороны параллельны, а другие две не параллельны, называется трапецией.

Следовательно, перед нами трапеция.

Записываем формулу нахождения площади данной фигуры.

Площадь трапеции равна произведению полусуммы оснований на высоту.

Определяем по чертежу все необходимые данные.

Основания трапеции – параллельные стороны.

На рисунке красным выделены основания. Обозначим их a и b.

a = 2 м( длина 2 клеточек, каждая из которых по условию 1 м х 1 м)

b = 5 м(длина 5 клеточек, каждая из которых по условию 1 м х 1 м)

Высота трапеции -отрезок, соединяющий основания и при этом перпендикулярный им. Обозначим высоту трапеции h.

h = 3 м (длина 3 клеточек, каждая из которых по условию 1 м х 1 м)

Вычислим площадь участка.

Найдем площадь трапеции с основаниями a = 2, b = 5 и высотой h = 3:

image002

Ответ: 10,5.


Четвертый вариант задания

План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м х 1 м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

image001

Алгоритм выполнения задания:
  1. Определить что за фигура на рисунке.
  2. Записать формулу нахождения площади данной фигуры.
  3. Определить по чертежу все необходимые данные.
  4. Вычислить площадь участка.
Решение:

Определим, что за фигура на рисунке.

Видно, что у данного четырехугольника все стороны равны, проверяем это с помощью линейки.

Ромб — это параллелограмм, у которого все стороны равны.

Следовательно, перед нами ромб.

Запишем формулу нахождения площади данной фигуры.

Площадь ромба равна половине произведения диагоналей.

Определим по чертежу все необходимые данные.

Диагонали ромба – это прямые, соединяющие противоположные вершины.

На рисунке красным выделены диагонали. Обозначим их d1 и d2.

d1 = 4 м(длина 4 клеточек, каждая из которых по условию 1 м х 1 м)

d2 = 6 м(длина 5 клеточек, каждая из которых по условию 1 м х 1 м)

Вычислим площадь участка.

Нужно найти площадь ромба с диагоналями 6 и 4, получим:

image002 .

Ответ: 12.


Пятый вариант задания (демонстрационный вариант 2018)

Дачный участок имеет форму прямоугольника со сторонами 25 метров и 30 метров. Хозяин планирует обнести его забором и разделить таким же забором на две части, одна из которых имеет форму квадрата. Найдите суммарную длину забора в метрах.

Алгоритм выполнения задания:
  1. Вычислить периметр прямоугольника.
  2. Прибавить длину разделяющей части.
Решение:

Вычислим периметр прямоугольника.

Периметр – сумма длин всех сторон.

В прямоугольнике противоположные стороны равны.

P = 30 м + 30 м + 25 м + 25 м = 110 м.

110 м – длина забора без перегородки.

Прибавим длину разделяющей части.

По рисунку видно, что длина разделяющей части 25 м.

110 м + 25 м = 135 м.

Ответ: 135.


Вариант восьмого задания 2017 (1)

Какой угол (в градусах) образуют минутная и часовая стрелки в 16:00?

Задание №8 ЕГЭ по математике базовый уровень

Решение данной задачи довольно простое. Сначала мы найдем, сколько в градусах занимает один час. Так как вся окружность - 360°, а часов 12, то один час:

360° : 12 = 30°

Значит в четыре часа угол будет равен:

30° • 4 = 120°

Ответ: 120°


Вариант восьмого задания 2017 (2)

План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

Задание №8 ЕГЭ по математике базовый уровень

Так как перед нами изображена трапеция, то вспомним площадь трапеции: полусумма оснований умноженная на высоту. В нашем примере большее основание равно пяти, меньшее - трем, высота равна трем, следовательно площадь участка:

(5 + 3) : 2 • 3 = 12

Ответ: 12