Разбор и решение задания №8 ОГЭ по математике


Уравнения, неравенства и их системы


В задании № 8 проверяется умение решать уравнения, неравенства и их системы. Конечно, под такие слова подходит огромный спектр заданий. Уточнение, пожалуй, одно. Надо применять графическое представление решения и показа результатов этого решения. В демонстрационном варианте ОГЭ предложена система двух линейных неравенств и графические представления вариантов ответов. Полезно понимать, что главным здесь является решение конкретных неравенств и понимание геометрического смысла полученного решения.

Ответом в задании 8 является одна из цифр 1; 2; 3; 4, соответствующая номеру предложенного варианта ответа к заданию.


Теория к заданию №8


Определение:

Неравенством называется выражение вида:
a < b (a ≤ b), a > b (a ≥ b)

неравенства

Полезным для нас окажется метод интервалов:

метод интервалов


Разбор вариантов задания №8 ОГЭ по математике


Укажите решение неравенства:

2 x - 3 ( x - 7) ≤ 3

Для решения линейного неравенства достаточно выполнить действия, аналогичные действию решений линейных уравнений. Однако, в отличие от линейных уравнений следует проявлять внимательность при выполнении операций деления или умножения на отрицательное число - в этих случаях знак неравенства будет меняться на противоположный!

Для решения этого примера вначале раскроем скобки, не забывая, что -3 умножается на -7 и дает  + 21:

2 x - 3 x + 21 ≤ 3

Затем приводим подобные, перенося числа в правую сторону:

2 x - 3 x ≤ 3 - 21

- x ≤ -18

Нам необходимо умножить неравенство на -1, чтобы получить диапазон x, не забывая, что при этом меняется знак неравенства:

x ≥ 18

Таким образом, мы получаем, что x должен быть больше либо равен 18.

Ответ: [18; +∞)


Рассмотрим второй пример восьмого задания. В данном случае мы имеем дело с квадратным неравенством:

Укажите множество решений неравенства:

7 x - x2 < 0

Существую несколько способ решения квадратных неравенств, но я приведу самый простой и надежный. В начале выносим x за скобку, так как это неполное квадратное неравенство:

x ( 7 - x ) < 0

Затем находим ноли функции x ( 7 - x ) = 0, приравнивая каждый множитель к нолю:

x = 0

7 - x = 0

Получаем:

x = 0

x = 7

Таким образом, мы получили три интервала:

( -∞ ; 0 )

( 0 ; 7 )

( 7 ; +∞)

Подставим любое значение x из первого интервала и посмотрим на получившийся ответ.

Подставим -1:

x ( 7 - x ) =  - 1 ( 7 - (-1) ) = -8

Значение отрицательно, значит в интервале ( -∞ ; 0 ) функция отрицательна, что нам и подходит для ответа, так как в условии:

x ( 7 - x ) < 0

Подставим 1:

x ( 7 - x ) = 1 ( 7 - 1 ) = 6

Значение положительно, и промежуток ( 0 ; 7 ) нам не подходит.

Подставим 8:

x ( 7 - x ) = 8 ( 7 - 8 ) = - 8

Значение отрицательно, и это подходит под условия, следовательно ответ:

( -∞ ; 0 ) и ( 7 ; +∞)

или графически:

Решение 8 задания ОГЭ по математике


Рассмотрим еще один вариант восьмого задания ОГЭ по математике - решение системы линейных неравенств.

Укажите множество системы неравенств:

⌈ x - 4 ≥ 0

⌊ x - 0,3 ≥ 1

Решение системы линейных неравенств сводится к решению линейного неравенства с дальнейшим анализом промежутков. В начале действуем аналогично первому случаю: переносим числа в правую часть, оставляя x слева:

⌈ x ≥ 4

⌊ x ≥ 1,3

В отличие от первого примера, решение более простое, но в данном случае нужно сравнить промежутки и выбрать общий. Первое неравенство требует, чтобы  x был больше 4, а второе - более 1,3, на координатной прямой это будет выглядеть следующим образом:

Решение 8 задания ОГЭ по математике

Промежутки перекрывают друг друга начина с 4, значит ответ выглядит следующим образом (не забываем, что неравенство нестрогое):

[ 4 ; + ∞ )  или

Решение 8 задания ОГЭ по математике


Оцените мой разбор задания, поделитесь с друзьями в соцсетях и задавайте вопросы в комментариях!