OM1306o

Упрощение заданного выражения нужно начать с преобразований в скобках. Здесь следует привести дроби к общему знаменателю: теперь переходим от деления дробей к их умножению: затем 1) сокращаем дроби на 5ab; 2) в числителе первой дроби раскладываем выражение, используя формулу сокращенного умножения для разности квадратов: сокращаем выражение на (a–5b): Представим числовые значения для a и b […]
Продолжить чтение!

OM1305o

Выполним тождественные преобразования выражения, чтобы упростить его. 1-й шаг – переход от деления дробей к их умножению: далее в знаменателе второй дроби сворачиваем выражение по формуле сокращенного умножения (используем ф-лу для квадрата суммы): теперь сокращаем выражение (в числителе первой дроби и в знаменателе второй) и приходим к окончательно упрощенному виду: Подставляем числовое значение для х […]
Продолжить чтение!

OM1304o

В первую очередь в заданиях такого типа необходимо упростить выражение, а затем подставить числа. Приведем выражение к общему знаменателю — это b, для этого умножим первое слагаемое на b, после этого получим в числителе: 9b² + 5a — 9b² Приведем подобные слагаемые — это 9b² и  — 9b², в числителе остается 5a. Запишем конечную дробь: […]
Продолжить чтение!

OM1303o

Итак, в данном задании при вычитании дробей нам необходимо привести их к общему знаменателю. Общий знаменатель — это 15 x y, для этого необходимо первую дробь домножить на 5 y — и числитель и знаменатель, естественно: Далее, после того как дроби приведены к общему знаменателю, можно производить вычисления. Вычислим числитель: 5 y — (3 x + […]
Продолжить чтение!

OM1302o

В данном случае, в отличие от первого, мы будем упрощать выражение вынося за скобки, а не раскрывая их. Сразу можно заметить, что b присутствует у первой дроби в числителе, а у второй — в знаменателе, поэтому можем их сократить. Семь и четырнадцать тоже сокращаются на семь: Далее выносим из числителя второй дроби a:  Сокращаем (a-b): […]
Продолжить чтение!

OM1301o

В данном случае необходимо сначала упростить выражение, для этого раскроем скобки: (x + 5)2 — x (x — 10) = x2 + 2 • 5 • x + 25 — x2 + 10x Затем приведем подобные слагаемые: x2 + 2 • 5 • x + 25 — x2 + 10x = 20 x + 25 Далее подставим x из условия: 20 x + 25 = 20 • […]
Продолжить чтение!

OM0807o

Используем правило умножения и деления степеней с одинаковым основанием. Заключается оно в том, что при их умножении показатели степеней суммируются, а при делении вычитаются (от показателя в числителе вычитается показатель, стоящий в знаменателе). Тогда получаем:
Продолжить чтение!

OM0806o

В 1-м корне представляем 4900 в виде произведения 49·100. Оба эти числа являются точными квадратами: 49=72 и 100=102. И, значит, число под корнем можно полностью вынести из-под него, применив правила работы с подкоренными выражениями. В целом получаем:   По аналогии извлекаем и 2-й корень: В итоге получаем:
Продолжить чтение!

OM0805o

В данном задании у нас проверяют навыки операций с иррациональными числами. Разберем каждый вариант ответа в решении: 1) √6-3 √6 само по себе является иррациональным числом, для решения подобных задач достаточно помнить, что рационально извлечь корень можно из квадратов натуральных чисел, например, 4, 9, 16, 25… При вычитании из иррационального числа любого другого, кроме его же […]
Продолжить чтение!

OM0804o

Заметим, что в знаменателе присутствует разность (4 — √14), от которой нам необходимо избавиться. Как же это сделать? Для этого вспоминаем формулу сокращенного умножения, а именно разность квадратов! Чтобы правильно её применить в этом задании необходимо помнить правила обращения с дробями. В данном случае вспоминаем, что дробь не изменяется, если числитель и знаменатель домножить на […]
Продолжить чтение!

OM0803o

Для решения этой задачи нужно действовать следующим образом: Сначала разберемся, степень какого числа рассмотрена в данном примере — это число 9, так как его квадрат 81, и это уже чем-то похоже на выражения в ответах. Далее рассмотрим формы числа 9 — это могут быть: 0,9 90 Рассмотри каждое из них: 0,9 = √(0,9)² = √0,81 90 = √(90²) […]
Продолжить чтение!

OM0802o

Для решения данного задания нужно привести все выражения к общему виду — представить выражения в виде подкоренных выражений: 3√5 Переносим 3 под корень: 3√5 =  √(3² •5) = √(9•5) =  √45 2√11 Переносим 2 под корень: 2√11 = √(2² • 11) = √(4 • 11) =√44 2√10 Переносим 2 под корень: 2√10 = √(2² • 10) = √(4 • 10) =√40 6,5 Возводим 6,5 […]
Продолжить чтение!

OM0801o

Для решения данной задачи необходимо вспомнить следующие правила обращения со степенями: при умножении степени складываются приделении степени вычитаются при возведении степени в степень степени перемножаются при извлечении корня степени делятся Кроме того, для решения необходимо представить 121 как степень 11, а именно это 112. 121 • 11n = 112 • 11n С учетом правила умножения, складываем степени:   112 • 11n = 11n+2 Следовательно, […]
Продолжить чтение!
задание-3-ОГЭ-по-математике

Задание №8 ОГЭ по математике

Теория к заданию №8 Из теоретического материала нам пригодятся правила обращения со степенями: Правила работы с подкоренными выражениями: Кроме этого, нам понадобятся формулы сокращенного умножения: Квадрат суммы (a + b)2 = a2 + 2ab + b2 Квадрат разности (a — b)2 = a2 — 2ab + b2 Разность квадратов a2 – b2 = (a + […]
Продолжить чтение!