Задание №1. В таблице даны размеры (с точностью до мм) четырех листов, имеющих форматы А0, А1, А3 и А4. Номер листа Длина (мм) Ширина (мм) 1 297 210 2 420 297 3 1189 841 4 841 594 Установите соответствие между форматами и номерами листов. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр, соответствующих номерам […]
Продолжить чтение!
Рассмотрим решение данной задачи самым простым способом. Для этого разберем, что происходило с изотопами. Имеем один изотоп А массой 400 мг. Через каждые 9 минут половина его атомов преобразуется в атомы второго изотопа Б (то есть первый отдает второму свою половинку каждые 9 минут). Нам надо узнать массу этого второго изотопа Б через 36 минут. […]
Продолжить чтение!
Рассмотрим простой способ решения данной задачи. Итак, выпишем, что имеем по условию и что надо узнать. Имеем изотоп массой 320 мг, затем его масса уменьшается в 2 раза каждые 8 минут. Найти надо его массу через 48 минут. Удобнее записать это в виде таблицы, просчитывая сначала время (левый столбец), прибавляя по 8 мин и дойдя […]
Продолжить чтение!
Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует Известно Решение Подача и первые 5 минут – 159 руб – Стоимость с 6 по 15 минуту – 80 рублей Стоимость с 6 по 25 минуту – 160 рублей. Разница во времени 10 минут стоит 80 […]
Продолжить чтение!
Определим, к какой последовательности относится наша задача. По условию имеем, что после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. Это геометрическая прогрессия. Теперь выпишем, что известно по условию и определим, что надо найти: первый член прогрессии b1=400, знаменатель q=1\2, n – количество отскоков, значит, найти надо n при bn<20. […]
Продолжить чтение!
Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем. Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, […]
Продолжить чтение!
Для того чтобы начать решать неравенство, мы должны понимать, интервал каких чисел будем находить – положительных или отрицательных. Для этого перенесем выражение из правой части в левую, изменяя знак на противоположный, и справа от знака «меньше» образуется нуль: (х−5)2−√7(х−5)<0 Теперь вынесем за скобки общий множитель (х-5), получим: (х−5)(х−5−√7)<0 Найдем нули функции, приравнивая каждый множитель к […]
Продолжить чтение!
Чтобы решить данное задание, необходимо понимать, что выполнять действия умножение и деление степеней мы можем в том случае, если они имеют одинаковые основания. Поэтому разложим на множители основание 36 нашего числителя так, чтобы вместо 36 были числа 4 и 3, которые есть в знаменателе. (3∙3∙4)n4n−2∙32n−1 .. Теперь представим каждый множитель в виде степени: 3n∙3n∙4n4n−2∙32n−1 .. Разложим знаменатель […]
Продолжить чтение!
Имеем дробное неравенство, где решать надо будет только знаменатель. Но для этого посмотрим, что решением неравенства являются числа, которые больше или равны нулю. Для этого наш знаменатель должен быть отрицательным числом, так как числитель – число тоже отрицательное, а при делении двух отрицательных чисел получим число положительное. Далее, знаменатель не должен быть равен нулю, так […]
Продолжить чтение!
Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут. Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на […]
Продолжить чтение!
Для начала преобразуем нашу дробь, которая дана по условию. Применим правило пропорции, умножив на 5 знаменатель данной дроби: 4a−9b+39a−4b+3..=5 5(9а – 4b + 3)=4a – 9b+3 Раскроем скобки и перенесем слагаемые с буквами а и b влево, а свободные члены вправо (не забывая изменять при переносе знаки на противоположные): 45a – 20b +15 =4a – […]
Продолжить чтение!
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N. Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= […]
Продолжить чтение!
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции. Рассмотрим треугольник CНD, где CD=17, угол Н=900, следовательно, треугольник прямоугольный. Найдем величину угла DCН, 1350 – 900=450 (так как провели высоту CН). Отсюда следует, что угол D=450, так как треугольник прямоугольный. Значит, треугольник является равнобедренным […]
Продолжить чтение!
Раскроем модуль: {.у=х2−2х−1, при х≥−12….у=х2+2х+1, при х<−12…) Для построения графика найдем вершины каждой параболы: у=х2 – 2х – 1 х0=−b2a..=22..=1 у0=12 -2-1=-2 Итак, вершина первой параболы (1; -2) Возьмем дополнительные точки, где х ≥−12.. х -0,5 0 2 3 у 0,25 -1 -1 2 у=х2 + 2х + 1 Аналогично найдем вершину второй параболы: х0=-1, у0=0 Вершина второй параболы […]
Продолжить чтение!
Составим для удобства решения таблицу, в которую внесем данные из условия задачи, обозначив переменной х неизвестную величину – скорость 1 автомобиля: Скорость Время Расстояние 1 автомобиль х 800х.. 800 2 автомобиль х – 36 800х−36.. 800 Пояснения к заполнению таблицы: Так как мы обозначили за х скорость 1 авто, значит скорость 2 авто будет на […]
Продолжить чтение!
Нам дано уравнение третьей степени: х3 + 6х2=4х + 24 В данном уравнении перенесем все слагаемые в одну сторону ( в левую), изменяя при этом знаки: х3 + 6х2 – 4х – 24=0 Теперь сгруппируем слагаемые: (х3 + 6х2) – (4х + 24)=0 Вынесем общий множитель за скобки из каждой группы: х2(х + 6) – […]
Продолжить чтение!
Обращаем внимание на то, что вопрос содержит слово КАКИЕ, что означает нахождение нескольких верных ответов. Итак, первое утверждение является верным, потому что есть теорема о сумме углов треугольника, равной 180 градусов, это не зависит от вида треугольника. Второе утверждение является не верным, так как по определению, только у равнобедренной трапеции боковые стороны равны. Теперь становится […]
Продолжить чтение!
Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.
Продолжить чтение!
Для нахождения площади трапеции в справочном материале есть формула S=a+b2..h, для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S=7+112..∙7=182..∙7=9∙7=63
Продолжить чтение!