OM2005

Для того чтобы начать решать неравенство, мы должны понимать, интервал каких чисел будем находить – положительных или отрицательных. Для этого перенесем выражение из правой части в левую, изменяя знак на противоположный, и справа от знака «меньше» образуется нуль: (х−5)2−√7(х−5)<0 Теперь вынесем за скобки общий множитель (х-5), получим: (х−5)(х−5−√7)<0 Найдем нули функции, приравнивая каждый множитель к […]
Продолжить чтение!

OM2004

Чтобы решить данное задание, необходимо понимать, что выполнять действия умножение и деление степеней мы можем в том случае, если они имеют одинаковые основания. Поэтому разложим на множители основание 36 нашего числителя так, чтобы вместо 36 были числа 4 и 3, которые есть в знаменателе. (3∙3∙4)n4n−2∙32n−1 .. Теперь представим каждый множитель в виде степени: 3n∙3n∙4n4n−2∙32n−1 .. Разложим знаменатель […]
Продолжить чтение!

OM2003

Имеем дробное неравенство, где решать надо будет только знаменатель. Но для этого посмотрим, что решением неравенства являются числа, которые больше или равны нулю. Для этого наш знаменатель должен быть отрицательным числом, так как числитель – число тоже отрицательное, а при делении двух отрицательных чисел получим число положительное. Далее, знаменатель не должен быть равен нулю, так […]
Продолжить чтение!

OM2002

Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут. Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на […]
Продолжить чтение!

OM2001

Для начала преобразуем нашу дробь, которая дана по условию. Применим правило пропорции, умножив на 5 знаменатель данной дроби: 4a−9b+39a−4b+3..=5              5(9а – 4b + 3)=4a – 9b+3 Раскроем скобки и перенесем слагаемые с буквами а и b влево, а свободные члены вправо (не забывая изменять при переносе знаки на противоположные): 45a – 20b +15 =4a – […]
Продолжить чтение!

25OM21R

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы. При построении прямой АО образовалась точка пересечения этой прямой с окружностью, обозначим её буквой Е и соединим с точкой В и с точкой С. Получим вписанные углы АВЕ и АСЕ, опирающиеся на диаметр АЕ, следовательно угол АВЕ и АСЕ равны по 900. […]
Продолжить чтение!

24OM21R

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N. Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= […]
Продолжить чтение!

23OM21R

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции. Рассмотрим треугольник CНD, где CD=17, угол Н=900, следовательно, треугольник прямоугольный. Найдем величину угла DCН, 1350 – 900=450 (так как провели высоту CН). Отсюда следует, что угол D=450, так как треугольник прямоугольный. Значит, треугольник является равнобедренным […]
Продолжить чтение!

22OM21R

Раскроем модуль: {.у=х2−2х−1, при х≥−12….у=х2+2х+1, при х<−12…) Для построения графика найдем вершины каждой параболы: у=х2 – 2х – 1 х0=−b2a..=22..=1 у0=12 -2-1=-2 Итак, вершина первой параболы (1; -2) Возьмем дополнительные точки, где х ≥−12.. х -0,5 0 2 3 у 0,25 -1 -1 2 у=х2 + 2х + 1 Аналогично найдем вершину второй параболы: х0=-1, у0=0 Вершина второй параболы […]
Продолжить чтение!

21OM21R

Составим для удобства решения таблицу, в которую внесем данные из условия задачи, обозначив переменной х неизвестную величину – скорость 1 автомобиля: Скорость Время Расстояние 1 автомобиль х 800х.. 800 2 автомобиль х – 36 800х−36.. 800 Пояснения к заполнению таблицы: Так как мы обозначили за х скорость 1 авто, значит скорость 2 авто будет на […]
Продолжить чтение!

20OM21R

Нам дано уравнение третьей степени: х3 + 6х2=4х + 24 В данном уравнении перенесем все слагаемые в одну сторону ( в левую), изменяя при этом знаки: х3 + 6х2 – 4х – 24=0 Теперь сгруппируем слагаемые: (х3 + 6х2) – (4х + 24)=0 Вынесем общий множитель за скобки из каждой группы: х2(х + 6) – […]
Продолжить чтение!

19OM21R

Обращаем внимание на то, что вопрос содержит слово КАКИЕ, что означает нахождение нескольких верных ответов. Итак, первое утверждение является верным, потому что есть теорема о сумме углов треугольника, равной 180 градусов, это не зависит от вида треугольника. Второе утверждение является не верным, так как по определению, только у равнобедренной трапеции боковые стороны равны. Теперь становится […]
Продолжить чтение!

18OM21R

Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.
Продолжить чтение!

17OM21R

Для нахождения площади трапеции в справочном материале есть формула S=a+b2..h, для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S=7+112..∙7=182..∙7=9∙7=63
Продолжить чтение!

16OM21R

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже. Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22√2, то сторона квадрата […]
Продолжить чтение!

15OM21R

Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 840:2=420
Продолжить чтение!

14OM21R

Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее: -6-8=-14 через 1 минуту -14-8=-22 через 2 минуты -22-8=-30 через 3 минуты -30-8=-38 через 4 минуты -38-8=-46 через 5 минут -46-8=-54 через 6 минут Значит, наш […]
Продолжить чтение!

13OM21R

8х – х2≥0 Вынесем -х за скобки: -х(-8 + х) ≥0 Теперь разделим на -1, не забывая изменить знак неравенства на противоположный: х(х – 8) ≤0 Найдем нули функции, приравняв каждый множитель к нулю: х=0 и х – 8=0, найдем х из второго уравнения: х=8. Итак, имеем нули функции 0 и 8. Теперь расставляем их на числовом […]
Продолжить чтение!

12OM21R

Для выполнения данного задания надо подставить все известные данные в формулу: 12,8=d1×16×25..2.. В правой части можно сократить 16 и 2 на 2: 12,8=d1×8×25..1.. Теперь умножим 8 на дробь 25.., получим 3,2: 12,8=d1×3,2 Найдем неизвестный множитель, разделив 12,8 на 3,2: d1=12,8:3,2=4
Продолжить чтение!

11OM21R

На рисунках в задании изображены параболы. Вспомним, что обозначают коэффициенты а и с: а – направление ветвей (a<0 – ветви вниз; а>0 – ветви вверх); коэффициент с показывает ординату точку пересечения параболы с осью х (с >0 – пересечение в положительном направлении; с<0 – пересечение в отрицательном направлении). Теперь поработаем с графиками и подпишем на […]
Продолжить чтение!