EF17986

Алгоритм решения 1.Описать процессы, происходящие во время обоих опытов. 2.С помощью физических формул установить, как изменяется сила давления света. Решение В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, […]

Продолжить чтение!

EF15717

Алгоритм решения 1.Записать исходные данные. 2.Записать формулу закона сохранения энергии применительно к фотоэффекту. 3.Переписать формулу закона сохранения энергии применительно к опытам 1 и 2. 4.Используя формула, связывающую задерживающее напряжение и кинетическую энергию фотона, определить работу выхода. 5.Записать формулу для красной границы фотоэффекта. 6.Выполнить решение в общем виде. 7.Подставить известные данные и найти искомую величину. Решение […]

Продолжить чтение!

EF18201

Алгоритм решения 1.Записать исходные данные. 2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения. 3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду. 4.Из полученного выражения выразить количество фотонов, излученных лазером за время t. 5.Записать формулу для количества фотонов, выделяемых за время […]

Продолжить чтение!

EF17985

Алгоритм решения 1.Записать исходные данные. 2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью. 3.Выполнить решение в общем виде. 4.Подставить известные данные и найти искомую величину. Решение Запишем исходные данные: • Количество фотонов: N = 6∙105 шт. • Поглощенная мощность: P = 5∙10–14 Вт. • Время: t = 4 с. Вся энергия фотонов будет поглощена детектором. Согласно закону […]

Продолжить чтение!

EF17650

Алгоритм решения 1.Записать исходные данные. 2.Записать второй постулат Бора в математической форме. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Энергия стационарного состояния: En = –13,6 эВ. • Частота поглощенного фотона: νkn = 3,7∙1015 Гц. Запишем второй постулат Бора в математической форме: hνkn=Ek−En Скорость электрона мы можем посчитать, […]

Продолжить чтение!

EF17645

Алгоритм решения 1.Определить, от чего зависит и как меняется длина световой волны. 2.Записать закон сохранения энергии, формулу зависимости кинетической энергии от напряжения запирания. 3.Используя формулы, становить, как меняется напряжение запирания и кинетическая энергия. Решение Длина световой волны определяется ее цветом. Красный свет имеет большую длину волны. Следовательно, во втором опыте длина световой волны уменьшится. Закон […]

Продолжить чтение!

EF17973

Алгоритм решения 1.Записать исходные данные. 2.Записать формулу закона сохранения энергии применительно к фотоэффекту. 3.Выполнить решение в общем виде. 4.Подставить известные данные и найти искомую величину. Решение Запишем исходные данные: • Максимальная кинетическая энергия выбитых электронов: Emax = 3 эВ. • Работа выхода из металла: A = 2 Emax. Закона сохранения энергии для фотоэффекта: hν=A+mv22.. Или: E=A+Emax=2Emax+Emax=3Emax=3·3=9 (эВ)

Продолжить чтение!

EF17570

Алгоритм решения Сформулировать второй постулат Бора. Определить, при переходе с какого на какой уровень выделяется фотон с максимальной энергией. Решение Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний. Причем чем на более высоком уровне находится […]

Продолжить чтение!

EF17569

Алгоритм решения Кратко описать суть и результаты опыта, проведенного Резерфордом. Установить, какие выводы позволил сделать этот опыт. Решение Резерфорд направил пучок радиоактивного излучения на золотую фольгу. Альфа-частицы, проходя сквозь нее, попадали на экран и оставляли след. Если без фольги след представлял собой более менее четко ограниченный круг, то в случае с фольгой, четких границ круга […]

Продолжить чтение!

EF18183

Алгоритм решения Описать планетарную модель атома. Установить, какой рисунок подходит для данного химического элемента. Решение Планетарная модель атома подразумевает наличие положительно заряженного ядра, вокруг которого вращаются по орбитам электроны. Причем количество протонов равно количеству электронов. Зарядовое число у лития равно 3. Следовательно, на орбитах вокруг ядра должно вращаться 3 электрона — как на рисунке «в».

Продолжить чтение!

EF18691

Алгоритм решения Установить, будет ли атом нейтральным. Выбрать подходящий ответ. Решение Согласно условию, содержится 4 протона и всего 2 электрона. Это значит, что речь будет идти о положительно заряженном ионе. Массовое число будет равно 7 (4 протона + 3 нейтрона), а зарядовое число — 4 (4 протона). Этому соответствует ион бериллия.

Продолжить чтение!

EF17726

Алгоритм решения 1.Записать исходные данные. 2.Записать закон сохранения импульса. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Энергия излученного фотона: Eф = 16,32∙10–19 Дж. • Кинетическая энергия атома после излучения фотона: Eа = 8,81∙10–27 Дж. Так как до излучения фотона атом покоился, то его импульс был равен нулю. […]

Продолжить чтение!

EF17552

Алгоритм решения 1.Записать исходные данные и перевести единицы измерения величин в удобные для задачи измерения. 2.Записать закон радиоактивного распада. 3.Переписать закон радиоактивного распада применительно к условию задачи. 4.Выполнить решение в общем виде. 5.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Активность 1 куб. см введенного раствора: a0 = 2000 распадов/с. • Период полураспада […]

Продолжить чтение!