Тест №28 ЕГЭ по физике

Фильтр:
Ответы:
Вопросы:
Задание EF17717

Два груза массами соответственно М1 = 1 кг и М2 = 2 кг, лежащие на гладкой горизонтальной поверхности, связаны невесомой и нерастяжимой нитью. На грузы действуют силы F1 и F2, как показано на рисунке. Сила натяжения нити Т = 15 Н. Каков модуль силы F1, если F2 = 21 Н?

а) 6 Н

б) 12 Н

в) 18 Н

г) 21 Н

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Сделать чертеж. Указать все силы, которые действуют на 1 и 2 тело. Выбрать систему координат.
3.Записать для каждого тела второй закон Ньютона в векторной форме.
4.Записать для каждого тела второй закон Ньютона в виде проекций на оси ОХ и ОУ.
5.Выразить формулу для вычисления силы, действующей на первое тело.
6.Подставить известные данные и произвести вычисления.

Решение

Запишем исходные данные:

 Масса тела 1: m1 = 1 кг.
 Масса тела 2: m2= 1 кг.
 Сила натяжения нити: Т = 15 Н.
 Сила, действующая на второе тело, равна: F2 = 21 Н.

Сделаем чертеж. Систему координат выберем такую, чтобы ось ОУ была параллельная ускорению свободного падения.

Согласно третьему закону Ньютона, два тела действуют друг на друга с равными по модулю, но противоположными по направлению силами. Поэтому модули сил натяжения нити Т1и T2равны:

T1= T2 = T

Учтем это при записи второго закона Ньютона для каждого из тел:

Запишем второй закон Ньютона в проекциях на оси ОХ и ОУ. Сначала для первого тела:

T – F1 = m1a

N1 = m1g

Теперь для второго тела:

F2 T = m2a

N2 = m2g

Выразим из проекции на ось ОХ для 1 тела модуль первой силы:

F1 = T – m1a

Из проекции на ось ОХ для второго тела выразим ускорение:

Подставим ускорение в формулу для нахождения силы, действующей на первое тело:

.

.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | теория: Движение связанных тел

Задание EF17647 По горизонтальному столу из состояния покоя движется брусок массой 0,9 кг, соединённый с грузом массой 0,3 кг невесомой нерастяжимой нитью, перекинутой через гладкий невесомый блок (см. рисунок). Коэффициент трения бруска о поверхность стола равен 0,2. Натяжение вертикальной части нити равно:

а) 2,25 Н

б) 2,7 Н

в) 3 Н

г) 3,6 Н

Выберите ответ:




Посмотреть решение

Алгоритм решения

 Записать исходные данные.
 Сделать чертеж. Указать все силы, действующие на тела, и их направление. Выбрать систему отсчета.
 Записать второй закон Ньютона для бруска и подвешенного к нити груза в векторной форме.
 Записать второй закон Ньютона для обоих тел в виде проекций на оси.
 Вывести формулу для вычисления искомой величины.
 Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса первого тела (движущегося по плоскости) равна: m1 = 0,9 кг.
 Масса второго тела (подвешенного к нити) равна: m2 = 0,3 кг.
 Коэффициент трения первого тела о поверхность плоскости равна: μ = 0,2.

Выполним чертеж и укажем все силы, которые действуют на брусок и груз на нити. Выберем систему координат так, чтобы направление оси ОХ совпадало с направлением движения бруска.

Так как тела связаны, силы натяжения нити на обоих концах равны. Будем обозначать их без индекса. Запишем второй закон Ньютона в векторной форме для первого и второго тела соответственно:

Теперь запишем проекции на ось ОХ и ось ОУ соответственно для бруска:

Запишем проекцию на ось ОУ для груза на нити:

Выразим из этого выражения ускорение и получим:

Из проекции на ось ОХ сил, действующих на брусок, тоже выразим ускорение:

Приравняем правые части уравнений и получим:

Произведем вычисления:

.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | теория: Применение законов Ньютона Движение связанных тел

Задание EF22698 Два груза, связанные нерастяжимой и невесомой нитью, движутся по гладкой горизонтальной поверхности под действием постоянной горизонтальной силы F, приложенной к грузу М1 = 2 кг (см. рисунок). Нить обрывается при значении силы натяжения нити 4 Н, при этом модуль силы F равен 12 H. Чему равна масса второго груза М2?
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Выполнить чертеж, указав все силы, действующие на каждый из грузов.
3.Записать второй закон Ньютона для обоих тел.
4.Записать второй закон Ньютона в проекциях на ось ОХ.
5.Применить третий закон Ньютона.
6.Выразить массу второго груза (найти общее решение).
7.Произвести вычисления.

Решение

Запишем исходные данные:

 Масса первого груза равна: m1 = 2 кг.
 Сила натяжения нити равна: T = 4 Н.
 Модуль силы, которая действует на систему тел: F = 12 Н.

Выполним чертеж:

Запишем второй закон Ньютона для 1 и 2 тела соответственно:

Запишем второй закон Ньютона для 1 и 2 тела в проекции на ось ОХ:

F – T1 = m1a

T2 = m2a

Отсюда масса второго тела равна:

Согласно третьему закону Ньютона, тела действуют друг на друга с равными по модулю, но противоположными по направлению силами. Следовательно, силы натяжения нити равны на обоих концах:

T1 = T2 = T

Поэтому:

T = F – m1a

Из первого выражения выразим ускорение и подставим его во второе:

Подставим в формулу и получим:

.

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор | теория: Движение связанных тел

Задание EF22730 Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Записать закон сохранения импульса применительно к задаче.
3.Записать формулу кинетической энергии тела.
4.Выполнить общее решение.
5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.
 Масса тележки с песком: m2 = 15 кг.
 Кинетическая энергия тележки с камнем: Ek= 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cos.α=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22..

Отсюда скорость равна:

v=2Ekm1+m2..

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cos.α..=(m1+m2)m1cos.α..·2Ekm1+m2..

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos.60o..·2·2,253+15..=12·0,25=12·0,5=6 (мс..)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор | теория: Импульс тела, закон сохранения импульса

Задание EF18192

К бруску массой 0,4 кг, лежащему на горизонтальной поверхности стола, прикреплена пружина. Свободный конец пружины тянут медленно в вертикальном направлении (см. рисунок). Определите величину потенциальной энергии, запасённой в пружине к моменту отрыва бруска от поверхности стола, если пружина при этом растягивается на 2 см. Массой пружины пренебречь.

Ответ:

а) 40 мДж

б) 20 мДж

в) 80 мДж

г) 200 мДж

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Сделать чертеж, указать силы, действующие на пружину, выбрать систему отсчета.
3.Записать формулу для вычисления потенциальной энергии в пружине.
4.Выполнить общее решение.
5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса бруска: m = 4 кг.
 Удлинение пружины: ∆l = 2 см.

Переведем сантиметры в метры:

2 см = 0,02 м

Выполним рисунок. Для описания ситуации нам понадобится только одна ось: Oy.

Потенциальная энергия деформированной пружины определяется формулой:

Так как брусок поднимают за прикрепленную к нему пружину медленно, можно считать, что это движение равномерное (и прямолинейное). Поэтому, согласно второму закону Ньютона:

Fт = Fупр

Чтобы оторвать брусок от поверхности стола, модуль силы тяги должен быть равен модулю силы тяжести. Поэтому:

Fт = Fтяж =Fупр

Или:

mg = k∆l

Теперь можем выразить жесткость пружины:

Подставим жесткость пружины в формулу потенциальной энергии и сделаем вычисления:

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | теория: Механическая энергия и ее виды

Задание EF18087

Шайба массой m, скользящая по гладкой горизонтальной поверхности, налетает на лежащую неподвижно на той же поверхности шайбу массой 3m такого же размера. После частично неупругого удара первая шайба остановилась. Какова была кинетическая энергия первой шайбы до удара, если при ударе выделилось количество теплоты Q?

Ответ:

а) 3Q/2

б) 2Q

в) 9Q/2

г) 8Q

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Записать закон сохранения импульса.
3.Записать закон сохранения энергии с учетом выделения тепла при ударе.
4.Выполнить решение в общем виде.
5.Выразить искомую величину.

Решение

Запишем исходные данные:

 Масса первой шайбы: m.
 Масса второй шайбы: 3m.
 Количество выделенной теплоты при ударе: Q.

До удара двигалась только первая шайба, вторая покоилась, поэтому импульс второй шайбы равен нулю. После удара первая шайба остановилась, поэтому ее импульс стал равен нулю. Но начала двигаться вторая шайба. Поэтому закон сохранения импульса при ударе примет вид:

mv=3mV

Отсюда скорость второй шайбы равна v/3.

Запишем закон сохранения энергии с учетом того, что при ударе выделилось тепло:

Ek1=Ek2+Q

Кинетическую энергию второй шайбы можно выразить как доля от кинетической энергии первой шайбы, а также как произведение половинной массы на половинный квадрат:

Ek2=Ek1x=3mV22..=3mv22·9..

x — доля кинетической энергии второй шайбы от кинетической энергии первой шайбы.

Кинетическая энергия первой шайбы равна:

Ek1=mv22..

Теперь можем выразить x:

3mv22·9..=mv22..x

x=13..

Следовательно, на кинетическую энергию второй шайбы ушла 1/3 часть кинетической энергии первой шайбы, а в виде тепла выделилось 2/3 этой энергии. Отсюда:

Q=23..Ek1

Ek1=32..Q

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | теория: Закон сохранения механической энергии

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.
3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.
4.Выполнить решение задачи в общем виде.
5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.
 Скорость пластилиновой пули: v = 20 м/с.
 Длина нити: l = 40 см.
 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22..=(m+M)gh

V22..=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcos.α

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор | теория: Импульс тела, закон сохранения импульса Закон сохранения механической энергии

Задание EF17982

Однородный стержень АВ массой 100 г покоится, упираясь в стык дна и стенки банки концом В и опираясь на край банки в точке С (см. рисунок). Модуль силы, с которой стержень давит на стенку сосуда в точке С, равен 0,5 Н. Чему равен модуль горизонтальной составляющей силы, с которой стержень давит на сосуд в точке В, если модуль вертикальной составляющей этой силы равен 0,6 Н? Трением пренебречь.

Ответ:

а) 0,3 Н

б) 0,25 Н

в) 0,6 Н

г) 0,13 Н

Выберите ответ:




Посмотреть решение

Алгоритм решения

  1. Записать исходные данные и перевести единицы измерения величин в СИ.
  2. Выполнить чертеж. Выбрать ось вращения. Указать силы и их плечи.
  3. Использовать второй и третий законы Ньютона, чтобы выполнить общее решение.
  4. Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

  • Масса стержня: m = 100 г.
  • Модуль силы, с которой стержень давит на стенку сосуда в точке С: FC = 0,5 Н.
  • Модуль вертикальной составляющей силы, с которой стержень давит на сосуду в точке В: FBy = 0,6 Н.

Переведем единицы измерения в СИ:

100 г = 0,1 кг

Выполним чертеж:

Поскольку стержень покоится, согласно второму закону Ньютона, равнодействующая всех сил, действующих на него, должна быть равна нулю. На стержень действует три силы:

  • сила тяжести (mg);
  • сила реакции опоры в точке С (FC);
  • сила реакции опоры в точке В (FВ).

Поэтому:

mg+FC+FB=0

Запишем проекции на оси Ox и Oy соответственно:

FCx=FBx

FCy+FBy=mg

Модуль горизонтальной составляющей силы в точке В можно выразить через теорему Пифагора:

FCx=F2CF2Cy

Но вертикальная составляющая силы в точке C равна разности силы тяжести и горизонтальной составляющей силы в точке В:

FCy=mgFBy

Отсюда:

FBx=FCx=F2CF2Cy=F2C(mgFBy)2

Подставим известные данные и вычислим:

FBx=0,52(0,1·100,6)2=0,250,16=0,3 (Н)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | теория: Применение законов Ньютона Момент силы и правило моментов Правило моментов при решении задач Давление твердого тела

Задание EF18416 Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?
Введите ответ:
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Записать основное уравнение МКТ идеального газа.
3.Составить уравнения для обоих газов.
4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.
 Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23..nEk

Применим его для обоих газов и получим:

p1=23..n1Ek1 или 2p=23..nEk1 

p2=23..n2Ek2 или p=23..nEk2 

Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

Ek1=3pn..

Ek2=3p2n..

Поделим уравнения друг на друга и получим:

Ek1Ek2..=3pn..·2n3p..=2

.

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | теория: Основное уравнение МКТ идеального газа

Задание EF18824 В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?
Введите ответ:
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Записать основное уравнение МКТ идеального газа.
3.Составить уравнения для обоих газов.
4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.
 Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23..nEk

Применим его для обоих газов и получим:

p1=23..n1Ek1 или 2p=23..n1Ek 

p2=23..n2Ek2 или p=23..n2Ek 

Выразим концентрации молекул газа из каждого уравнения:

n1=3pEk..

n2=3p2Ek..

Поделим уравнения друг на друга и получим:

n1n2..=3pEk..·2Ek3p..=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | теория: Основное уравнение МКТ идеального газа

Задание EF17512

Три одинаковых сосуда, содержащих разреженный газ, соединены друг с другом трубками малого диаметра: первый сосуд  со вторым, второй  с третьим. Первоначально давление газа в сосудах было равно соответственно р, 3р и р. В ходе опыта сначала открыли и закрыли кран, соединяющий второй и третий сосуды, а затем открыли и закрыли кран, соединяющий первый сосуд со вторым. Как изменилось в итоге (уменьшилось, увеличилось или осталось неизменным) количество газа в первом сосуде? (Температура газа оставалась в течение всего опыта неизменной.)

Введите ответ:
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Применить закон Дальтона для определения давления в первом сосуде.
3.Применить закон Менделеева — Клапейрона для установления характера изменения количества газа в первом сосуде в ходе эксперимента.

Решение

Запишем исходные данные:

 Объемы сосудов равны: V1 = V2 = V3 = V.
 Температуры равны: T1 = T2 = T3 = T.
 Давления распределены следующим образом: p1 = p, p2 = 3p, p3 = p.

После того, как открыли кран между 2 и 3 сосудом, объем возрос вдвое, и давление распределилось по нему равномерно. Согласно закону Дальтона, оно стало равным сумме давлений, оказываемых газами в количестве вещества ν2 и ν3. Так как объем после открытия крана увеличивается вдвое, то парциальное давление каждого из количества вещества равно половине исходного давления:

p23=p2..+3p2..=2p

Потом кран 2–3 закрыли, но открыли кран 1–2. Применим закон Дальтона, получим:

p12=2p2..+p2..=3p2..

Теперь применим закон Менделеева — Клапейрона:

pV=νRT

Для начального состояния газа в 1 сосуде:

pV=ν1RT

Для конечного состояния газа в 1 сосуде:

3p2..V=ν2RT

Так как температура и объем неизменны, но давление увеличилось в 1,5 раза, то и количество газа в первом сосуде увеличилось в 1,5 раза.

Ответ: Увеличилось

pазбирался: Алиса Никитина | обсудить разбор | теория: Закон Дальтона

Задание EF17579

При постоянном давлении гелий нагрели, в результате чего он совершил работу 5 кДж? Масса гелия 0,04 кг. Насколько увеличилась температура газа?

Ответ:

а) 60 К

б) 25 К

в) 15 К

г) 3 К

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать первое начало термодинамики.
3.Записать формулу для расчета работы газа.
4.Выполнить решение задачи в общем виде.
5.Подставить известные данные и выполнить вычисления искомой величины.

Решение

Запишем исходные данные:

 Газ совершил работу: A = 5 кДж.
 Масса гелия: m = 0,04 кг.

5 кДж = 5000 Дж

Первое начало термодинамики:

ΔU=Q+A

Учтем, что не над газом совершают работу, а сам газ совершает ее:

Отсюда:

ΔU=QA

Так как газ нагревали изобарно, часть тепла ушла на изменение внутренней энергии газа, а часть — на совершение этим газом работы.

Работа, совершенная газом, равна:

A=pΔV=mM..RΔT

Молярная масса гелия равна 4∙10–3 кг/моль.

Отсюда:

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | теория: Первое начало термодинамики

Задание EF17648

За цикл, показанный на рисунке, газ получает от нагревателя количество теплоты Qнагр = 5,1кДж. КПД цикла равен 4/17. Масса газа постоянна. На участке 1–2 газ совершает работу

Ответ:

а) 1,2 кДж

б) 1,8 кДж

в) 2,6 кДж

г) 3,9 кДж

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Определить работу газа на заданном участке.
3.Выполнить решение в общем виде.
4.Выполнить вычисления, подставив известные данные.

Решение

Запишем исходные данные:

 Количество теплоты, переданное газу от нагревателя: Qнагр = 5,1 кДж.
 КПД цикла: η = 4/17.
 Масса постоянна: m = const.

5,1 кДж = 5,1∙103 Дж

Согласно графику, на участке 1–2 газ совершает работу, равную:

A=3p0(4V0V0)=9p0V0

Полезная работа ограничивается площадью фигуры внутри циклического графика. Она равна:

Aползн=9p0V0p0(4V0V0)=6p0V0

Отсюда:

A=9Aползн6..

КПД тепловой машины есть отношение полезной работы к количеству теплоты, полученному от нагревателя:

η=AползнQ..

Отсюда:

Aползн=ηQ

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | теория: Тепловые машины и второе начало термодинамики

Задание EF17508

Смещение груза пружинного маятника меняется с течением времени по закону x=Acos.2πT..t, где период Т = 1 с. Через какое минимальное время, начиная с момента t = 0, потенциальная энергия маятника вернется к своему исходному значению?

Ответ:

а) 0,1 с

б) 0,2 с

в) 0,3 с

г) 0,5

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Определить исходное значение потенциальной энергии шарика.
2.Сделать рисунок и определить положение шарика в начальный момент времени.
3.Определить положение шарика в момент в момент времени, когда потенциальная энергия шарика снова примет исходное значение.
4.Определить, через какое время шарик примет такое положение.

Решение

Известно, что смещение маятника меняется по закону:

x=Acos.2πT..t

В начальный момент времени t = 0 смещение будет равно амплитуде, поскольку косинус нуля равен «1». Следовательно, исходное значение потенциальной энергии маятника равно:

Wp0=kA22..

Сделаем рисунок, обозначив за x0 положение равновесия системы. Тогда A и –A будут амплитудами (максимальными смещениями от положения равновесия).

Потенциальная энергия зависит только от модуля смещения, поэтому ее значение станет таким же, как в начальный момент времени, когда смещение достигнет максимального смещения с противоположной стороны (оно составит –A). В этом легко убедиться:

Wpt=k(A)22..=kA22..=Wp0

К этому моменту пройдет половина периода колебания, следовательно:

t=T2..=12..=0,5 (с)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор | теория: Гармонические колебания

Задание EF17581

В двух идеальных колебательных контурах происходят незатухающие электромагнитные колебания. Максимальное значение заряда конденсатора во втором контуре равно 6 мкКл. Амплитуда колебаний силы тока в первом контуре в 2 раза меньше, а период его колебаний в 3 раза меньше, чем во втором контуре. Определите максимальное значение заряда конденсатора в первом контуре.

Ответ:

а) 1 мкКл

б) 4 мкКл

в) 6 мкКл

г) 9 мкКл

Выберите ответ:




Посмотреть решение

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать формулу, которая связывает амплитудные значения силы тока и заряда конденсатора.
3.Выполнить решение задачи в общем виде.
4.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Максимальное значение заряда конденсатора во втором контуре: q2max= 6 мкКл.
 Амплитуда колебаний силы тока в первом контуре: I1 = I.
 Амплитуда колебаний силы тока во втором контуре: I2 = 2I.
 Период колебаний в первом контуре: T1 = T.
 Период колебаний во втором контуре: T2 = 3T.

6 мкКл = 6∙10–6 Кл

Амплитудные значения силы тока и заряда конденсатора связываются формулой:

Imax=qmax 2πT..

Запишем эту формулу для первого и второго колебательного контура:

I1max=q1max 2πT1..

I2max=q2max 2πT2..

Преобразуем их, оставив слева только 2π:

2π=I1maxT1q1max..=ITq1max..

2π=I2maxT2q2max..=2I3Tq2max..=6IT6·106..=IT106..

Поскольку левые части уравнений равны, мы можем приравнять их правые части:

ITq1max..=IT106..

Следовательно, q1max=106 Кл.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | теория: Электромагнитные колебания

Задание EF18697

Невесомый стержень, находящийся в ящике с гладкими дном и стенками, составляет угол 45° с вертикалью (см. рисунок). К середине стержня подвешен на нити шарик массой 1 кг. Каков модуль силы упругости N, действующей на стержень со стороны левой стенки ящика?

Введите ответ:
Посмотреть решение

Алгоритм решения

1.Записать исходные данные.
2.Записать правило моментов.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Угол между стержнем и стенкой ящика: α = 45o.
 Масса шарика: m = 1 кг.

Чтобы записать правило моментов, нужно определить плечи силы тяжести и силы упругости. В качестве точки равновесия выберем точку опоры нижнего конца стержня. Тогда плечо силы тяжести будет равно произведению половины длины стержня на косинус угла между дном ящика и стержнем. Он тоже будет равен 45 градусам, так как он равен разности 180 градусов и угла α = 45o. Отсюда:

dmg=l2..cos.α

Плечо силы упругости будет равно расстоянию от дна ящика до верхней точки стержня. Оно определяется как произведение длины стержня на синус угла α:

dN=lsin.α

Запишем правило моментов:

mgl2..cos.α=Nlsin.α

Отсюда:

N=mgl2lsin.α..cos.α

Длина стержня в числителе и знаменателе сократится, косинус и синус угла тоже, так как при 45 градусах они одинаковые. Следовательно:

N=mg2..=1·102..=5 (Н)

.

Ответ: 5

pазбирался: Алиса Никитина | обсудить разбор | теория: Правило моментов при решении задач

Задание EF17578 Искусственный спутник обращается вокруг планеты по круговой орбите радиусом 4000 км со скоростью 3,4 км/с. Ускорение свободного падения на поверхности планеты равно 4 м/с2. Чему равен радиус планеты? Ответ запишите в километрах.
Введите ответ:
Посмотреть решение

Алгоритм решения

1.Записать исходные данные. Перевести единицы измерения в СИ.
2.Записать формулу ускорения свободного падения и выразить через нее радиус планеты.
3.Записать формулу, раскрывающая взаимосвязь между линейной скоростью и радиусом окружности, по которой движется тело.
4.Записать закон всемирного тяготения применительно к спутнику.
5.Вывести формулу для расчета радиуса планеты.
6.Подставить известные данные и произвести вычисление.

Решение

Запишем исходные данные:

 Линейная скорость спутника: v = 3,4 км/с, или 3,4∙103 м/с.
 Радиус орбиты спутника: Rо = 4000 км, или 4∙106 м.
 Ускорение свободного падения у поверхности планеты: g = 4 м/с2.

Ускорение свободного падения определяется формулой:

Отсюда радиус равен:

Линейная скорость и радиус орбиты связываются формулой:

Используя закон всемирного тяготения, запишем силы, с которой притягивается спутник к планете:

Согласно второму закону Ньютона, сила — это произведение массы на ускорение тела. Следовательно:

Отсюда:

Поделим обе части выражения на массу спутника и радиус его орбиты. Получим:

Из этой формулы выразим массу планеты:

Подставим массу планеты в формулу для нахождения ее радиуса:

Подставляем известные данные и вычисляем:

Этот радиус соответствует 3400 км.

Ответ: 3400

pазбирался: Алиса Никитина | обсудить разбор | теория: Гравитационные силы. Закон всемирного тяготения.


Даниил Романович | 👀 171 | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *