Работа с текстами физического содержания и их применение для решения задач
Для решения задания №21 ОГЭ по физике нужно правильно использовать предварительный текст, предназначенный для заданий №№20–22. Задание сформулировано так, что его решение и выбор прав.варианта ответа требует умения выделить из этого текста актуальные фрагменты. Другие теоретические сведения, в которых может возникнуть необходимость, можно найти в разделах теории к другим соответствующим конкретным темам-заданиям.
Разбор типовых вариантов заданий №21 ОГЭ по физике
Демонстрационный вариант 2018
[su_note note_color=»#defae6″]
[su_spoiler title=»Текст из ЕГЭ» icon=»chevron»]
Миражи
Мираж является оптическим явлением в атмосфере, которое делает видимыми предметы, которые в действительности находятся вдали от места наблюдения, отображает их в искажённом виде или создаёт мнимое изображение.
Миражи бывают нескольких видов: нижние, верхние, боковые миражи и другие. Образование миражей связано с аномальным изменением плотности в нижних слоях атмосферы (что, в свою очередь, связано с быстрыми изменениями температуры).
Нижние миражи возникают преимущественно в тех случаях, когда слои воздуха у поверхности Земли (например, в пустыне) очень сильно разогреты и их плотность становится аномально низкой. Лучи света, которые исходят от предметов, начинают преломляться и сильно искривляться. Они описывают дугу у поверхности и подходят к глазу снизу. В таком случае можно увидеть предметы как будто зеркально отражёнными в воде, а на самом деле это перевёрнутые изображения отдалённых объектов (рис.1). А мнимое изображение неба создаёт при этом иллюзию воды на поверхности.
Верхние миражи возникают над сильно охлажденной поверхностью, когда над слоем холодного воздуха у поверхности образуется более тёплый верхний слой (рис. 2). Верхние миражи являются наиболее распространёнными в полярных регионах, особенно на больших ровных льдинах со стабильной низкой температурой. Изображения предметов, наблюдаемые прямо в воздухе, могут быть и прямыми, и перевёрнутыми.
[/su_spoiler]
По мере приближения к поверхности Земли плотность атмосферы растёт:
Какое изменение графика зависимости плотности воздуха от высоты соответствует условию возникновения нижнего миража? (изменение показано сплошной линией)
[/su_note]
Алгоритм решения:
1. На основании предварительного текста выясняем условия, при которых возникают нижние миражи.
2–5. Анализируем предложенные графики №№1–4 и определяем соответствие каждого из них условиям появления нижних миражей. Определяем среди них правильный.
Решение:
- Условием возникновения нижних миражей (см. 3-й абзац предварит.текста) является сильный разогрев поверхности планеты и прилегающих к ней слоев воздуха. Плотность воздуха при этом существенно снижается.
- На графике №1 линия в своем начале, т.е. в точках, показывающих плотность при низкой высоте 0–4 км над уровнем моря, существенно отклонена вверх по сравнению с графиком, данным в условии. Это значит, что график №1 отображает ситуацию, когда плотность воздуха увеличилась. Такая ситуация характерна для появления верхних миражей. Т.о., график №1 нельзя считать верным ответом.
- График №2 фиксирует ситуацию, когда плотность воздуха тем ниже, чем ниже высота над уровнем моря. А по мере увеличения высоты она плавно повышается. Это как раз соответствует требованиям возникновения нижних миражей. Соответственно, график №2 – правильный ответ.
- График №3 показывает, что плотность воздуха на высоте примерно 8 км над уровнем моря плотность воздуха меньше, чем на высоте 0 км. Причем по мере снижения высоты плотность сначала увеличивается, а затем незначительно снижается. Это абсолютно не соответствует условиям, при которых нижний мираж может появиться. Вывод: график №3 не является правильным ответом.
- На графике №4 плотность воздуха со снижением высоты сначала немного понизилась, однако потом увеличилась, приблизившись по своему значению к плотности при нормальных условиях. При таких показателях нижний мираж появиться не может. Следовательно, график №4 – неверный ответ.
Ответ: 2
Первый вариант (Камзеева, № 1)
[su_note note_color=»#defae6″]
[su_spoiler title=»Текст из ЕГЭ» icon=»chevron»]
Открытие звукозаписи
Люди издавна стремились если не сохранить звук, то хотя бы как-то его зафиксировать. И когда 12 августа 1877 года Томас Эдисон пропел «Mary Had A Little lamb…» («Был у Мэри маленький барашек…»), мир изменился: ведь песня про барашка стала первой в мировой истории фонограммой – записанным и воспроизведенным звуком. Благодаря возможности записывать и воспроизводить звуки появилось звуковое кино. Запись музыкальных произведений, рассказов и даже целый пьес на граммофонные или патефонные пластинки стала массовой формой звукозаписи.
На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника звука (певца, оркестра и т.д.) попадали в рупор 1, в в котором была закреплена тонкая упругая пластинка 2, называемая мембраной. Под действием звуковой волны мембрана начинала колебаться. Колебания мембраны передавались связанному с ней резцу 3, острие которого оставляло при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивалась по спирали от края диска к его центру. На рисунках 1 и 2 показан вид звуковых бороздок на пластинке, рассматриваемых через лупу и при большем увеличении.
Диск, на котором производится звукозапись, изготавливается из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимают медную копию (клише). При этом используется осаждение на электроде чистой меди при прохождении электрического тока через раствор ее солей. Затем с медной копии делают оттиски на дисках из пластмассы. Так получают граммофонные пластинки.
При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причем эти колебания довольно точно воспроизводят записанный звук.
[/su_spoiler]
Какое действие тока используется при получении клише с воскового диска?
- магнитное
- тепловое
- световое
- химическое
[/su_note]
Алгоритм решения:
- Анализируем предварит.текст. Находим описание процесса возникновения эл.тока. Делаем вывод относительно природы действия эл.тока, определяем прав.вариант ответа.
- Объясняем, почему остальные варианты ответов являются неверными.
Решение:
- В 3-м абзаце предварит.текста прямо описывается способ получения заряженных частиц, обеспечивающих наличие эл.тока. Это – процесс электролиза, который в данном случае заключается в распаде солей меди на положит.заряженные ионы меди и отрицат.заряженные ионы кислотного остатка и дальнейшее направленное движение тех и других. Такое действие тока называется химическим и никак иначе. Следовательно, прав.вариант ответа – №4.
- Магнитным действие тока (вариант ответа №1) не является потому, что здесь не идет речь ни о взаимодействии пары проводников с током, ни об использовании магнита или иного источника, могущего вызвать такой эффект. О тепловом действии (вариант ответа №2) не можем говорить потому, что не происходит нагревания проводника с током. Световое действие эл.тока (вариант ответа №3) заключается в преобразовании эл.тока в видимый свет, чего в данном случае не наблюдается.
Ответ: 4
Второй вариант (Камзеева, № 2)
[su_note note_color=»#defae6″]
[su_spoiler title=»Текст из ЕГЭ» icon=»chevron»]
Приливы и отливы на Земле
Наша планета постоянно находится в гравитационном поле, которое создают Луна и Солнца. Это является причиной уникального явления, выраженного в приливах и отливах на Земле. Приливы и отливы – это изменения уровня воды морских стихий и Мирового океана. Характер образования приливов и отливов уже достаточно изучен: постепенно поднимается уровень воды, достигая своей наивысшей точки (уровень «полная вода»); далее вода начинает спадать (процесс «отлив»); в течение примерно шести часов вода продолжает уходить и достигает минимальной своей точки (уровень «малая вода»). На рисунке схематично представлено образование приливов и отливов.
Основное влияние на образование приливов и отливов оказывает Луна благодаря своему близкому положению относительно Земли. Наиболее близкая к Луне точка земной поверхности подвержена лунному тяготению примерно на 6% больше, чем наиболее удаленная.
В течение суток (лунных) бывают две полные и две малые воды. Период равен половине лунных суток и составляет в среднем 12 часов 25 минут. Лунными сутками принято называть время оборота Луны вокруг нашей планеты, он чуть длиннее привычных для нас двадцати четырех часов. Каждый день приливы и отливы сдвигаются на пятьдесят минут. Этот временной промежуток необходим волне, чтобы «догнать» Луну, перемещающуюся за земные сутки на тринадцать градусов.
Наблюдение процесса прилива в одном и том же месте на протяжении месяца показывает, что уровни малых и полных вод зависят от фазы Луны: в полнолуние и новолуние уровни отдаляются друг от друга, обеспечивая максимальную амплитуду прилива.
На земные приливы и отливы также влияет тяготение со стороны Солнца. Из-за огромной массы Солнца сила гравитационного притяжения между Солнцем и Землей почти в 200 раз больше силы притяжения между Землей и Луной (но из-за внушительной удаленности это действие очень мало различается для разных областей Земли). Амплитуда солнечных приливов практически вдвое меньше, чем у приливно-отливных процессов спутника Земли. В том случае, когда все три небесных тела – Земля, Луна и Солнце – располагаются на одной прямой, происходит складывание лунных и солнечных приливов.
Энергия приливной волны невероятно велика, поэтому уже много лет разрабатываются проекты по строительству электростанция в районах с большой амплитудой движения водных масс. В России таких электростанций уже несколько. Первая была построена в Белом море.
[/su_spoiler]
Наибольшее влияние на образование приливов и отливов на Земле оказывает:
- Солнце, так как притяжение между Солнцем и Землей почти в 200 раз больше притяжения между Землей и Луной
- Солнце, так как оно оказывает одинаковое действие на все области Земли
- Луна, так как силы тяготения со стороны Луны превышают силы тяготения со стороны Солнца
- Луна, так как сила притяжения Луны заметно меняется от участка к участку земной поверхности.
[/su_note]
Алгоритм решения:
1–4. Анализируем предложенные утверждения, основываясь на соответствующих фрагментах предварит.текста. Делаем выводы об истинности каждого из них.
Решение:
- Утверждение 1 является цитатой из предварит.текста (см. 5-й абзац), поэтому его нельзя назвать неправильным. Однако непосредственно после этого фрагмента в тексте же поясняется, почему Солнце, несмотря на значительную силу притяжения, не обеспечивает большой амплитуды приливов (т.е. влияния на их образование). Вывод: утверждение 1 не является прав.ответом.
- Солнце действительно оказывает примерно равное действие на воды мирового океана в разных частях планеты. Но поскольку амплитуда приливов, обеспечиваемых Солнцем, в 2 раза меньше лунных (см. 5-й абзац предварит.текста), то говорить, что влияние со стороны Солнца максимально, было бы совершенно неправильным. Вывод: утверждение 2 неверно.
- Утверждение 3 неверно, поскольку в 5-м абзаце предварит.текста есть прямая оговорка о том, что силы притяжения со стороны Солнца больше, чем со стороны Луна в 200 раз.
- В 4-м абзаце предварит.текста есть указание на то, что значительную (и в т.ч. максимальную) амплитуду прилива обеспечивают смены расстояний, на которых Луна в разные периоды времени находится от Земли. Поскольку именно об этом говорится в 4-м утверждении, делаем вывод, что утверждение 4 верно.
Ответ: 4
Третий вариант (Камзеева, № 7)
[su_note note_color=»#defae6″]
[su_spoiler title=»Текст из ЕГЭ» icon=»chevron»]
Открытие рентгеновских лучей
Рентгеновские лучи были открыты в 1895 г. Немецким физиком Вильгельмом Рентгеном. Рентген заметил, что при торможении быстрых электронов на любых препятствиях возникает сильно проникающее излучение, которое ученый назвал Х-лучами (в дальнейшем за ними утвердится термин «рентгеновские лучи»). Когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.
Схема современной рентгеновской трубки для получения Х-лучей представлена на рисунке. Катод 1 представляет собой подогреваемую вольфрамовую спираль, испускающую электроны. Поток электронов фокусируется с помощью цилиндра 3, а затем соударяется с металлическим электродом (анодом) 2. При торможении электронов пучка возникают рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт.ст.
Согласно приведенным исследованиям, рентгеновские лучи действовали на фотопластинку, вызывали ионизацию воздуха, не взаимодействовали с электрическими и магнитными полями. Сразу же возникло предположение, что рентгеновские лучи – это электромагнитные волны, которые в отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей имеют гораздо меньшую длину волны. Но если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаружить дифракцию – явление, присущее всем видам волн. Дифракцию рентгеновских волн удалось наблюдать на кристаллах. Кристалл с его периодической структурой и есть то устройство, которое неизбежно должно вызвать заметную дифракцию рентгеновских волн, так как длина их близка к размерам атомов.
[/su_spoiler]
Что является доказательством волновой природы рентгеновских лучей?
- высокая проникающая способность рентгеновских лучей
- взаимодействие с электрическим полем
- взаимодействие с магнитным полем
- дифракция на кристаллах
[/su_note]
Алгоритм решения:
1–4. Анализируем утверждения 1–4 в контексте вопроса задания и на основании предварит.текста и сути описываемых в них физ.процессов. Определяем их истинность.
Решение:
- Высокая проникающая способность рентген.лучей является следствием (и док-вом) малой длины их волны. Вывод: утверждение 1 неверно.
- Эл.поле анода лучевой трубки тормозит быстрые электроны движущиеся в ней от катода. При этом возникает рентген.излучение. Т.е. взаимодействие электронов с электрическим полем является причиной возникновения тормозного излучения, но никак не док-вом его волновой природы. Следовательно, утверждение 2 неверно.
- Магнитное поле используется для получения синхротронного излучения, в спектре которого образуются, в частности, рентгеновские лучи. Т.о., магнитное поле является еще одним источником создания рентген.лучей, но не док-вом их фолновой природы. Отсюда: утверждение 3 неверно.
- Явление дифракции свойственно именно волновому движению. Соответственно, дифракция может служить одним из док-в волновой природы рентген.излучения. Об этом же говорится и в последнем абзаце предварит.текста. Вывод: утверждение 4 верно.
Ответ: 4