Планиметрия. Углы.
Задание №6 профильного уровня ЕГЭ по математике — решение геометрических задач. В данном задании необходимо справиться с задачей по планиметрии на определение углов.
Теория к заданию №6
Немного стоит напомнить об углах в окружности, так как в задачах это достаточно популярная тематика.
Центральный и вписанный углы:
Разбор типовых вариантов заданий №6 ЕГЭ по математике профильного уровня
Первый вариант задания (демонстрационный вариант 2018)
[su_note note_color=»#defae6″]
Треугольник ABC вписан в окружность с центром O. Угол BAC равен 32°. Найдите угол BOC . Ответ дайте в градусах.
[/su_note]
Алгоритм решения:
- Выполняем рисунок.
- Определяем вид угла.
- Применяем свойство вписанных углов и вычисляем искомый угол.
- Записываем ответ.
Решение:
1. Выполняем рисунок.
2. Угол, который нужно найти является центральным. Он опирается на ту же дугу, что и угол АВС.
3. Вспомнить правило: «центральный угол в два раза больше вписанного, который опирается на ту же дугу».
4. Вписанный угол АВС, согласно условию, равен 320. Тогда центральный угол BOC равен 320∙ 2 = 640
Ответ: 640.
Второй вариант задания (из Ященко, №1)
[su_note note_color=»#defae6″]
Площадь треугольника ABC равна 152. DE — средняя линия. Найдите площадь треугольника CDE.
[/su_note]
Алгоритм решения:
- Устанавливаем подобие треугольников.
- Используем свойство площадей подобных треугольников.
- Записываем ответ.
Решение:
1. DE – средняя линия треугольника, следовательно, все стороны в треугольнике CDE меньше соответствующих сторон в треугольнике ABC. Это означает, что треугольники подобны, и коэффициент подобия равен 2.
2. Площади подобных фигур относятся как квадраты коэффициентов подобия, следовательно, площадь треугольника CDE в раза меньше, чем площадь треугольника ABC. Имеем:
152 / 4 = 38
Ответ: 38.
Третий вариант задания (из Ященко, №23)
[su_note note_color=»#defae6″]
Четырёхугольник ABCD вписан в окружность. Угол ABD равен 36°, угол CAD равен 52°. Найдите угол ABC. Ответ дайте в градусах.
[/su_note]
Алгоритм решения:
- Отмечаем на рисунке углы, которые ланы в задаче.
- Используем свойство вписанных углов.
- Находим угол АВС.
- Записываем ответ.
Решение:
1. Отмечаем углы ABD и CAD на рисунке. Эти углы вписаны в окружность.
2. Воспользуемся свойством вписанных в окружность углов: они равны градусной меры дуги, на которую опираются.
Тогда угол ABD, опирающийся на дугу AD. Градусная мера ее равна 360∙2=720, второй – угол CAD опирается на дугу CD с градусной мерой 520∙2=1040.
3. Дуга AC=AD+CD. Она имеет градусную меру: АС=720+1040=1760, а угол АВС, который на нее опирается, определяется как половина величины дуги: 1760:2=880.
Ответ: 88.
Четвертый вариант задания (из Ященко, №10)
[su_note note_color=»#defae6″]
Угол АСВ равен 54°. Градусная мера дуги АВ окружности, не содержащей точек D и Е, равна 138°. Найдите угол DAE. Ответ дайте в градусах.
[/su_note]
Алгоритм решения:
- Вычисляем угол BDA.
- Определяем величину угла ADC,
- Рассматриваем треугольник ADC, определяем искомый угол.
- Записываем ответ.
Решение:
1. Вычислим угол BDA. Он вписан в окружность, опирается на дугу AB. Тогда по свойству вписанных углов, его градусная мера равна половине градусной величины дуги AB. Тогда .
2. Рассматриваем угол ADC. Он смежный с углом BDA, значит,
3. Рассматриваем треугольник ADC. В нем известны два угла. По свойству суммы углов треугольника третий угол DAC можно найти так:
Из рисунка видно, что угол DAC совпадает с углом DAE, следовательно, угол DAE тоже равен 150.
Ответ: 150.