Задание OM1420222
📜Теория для решения: Геометрическая прогрессия и сумма ее членов
Посмотреть решение
Определим, к какой последовательности относится наша задача. По условию имеем, что после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. Это геометрическая прогрессия. Теперь выпишем, что известно по условию и определим, что надо найти: первый член прогрессии b1=400, знаменатель q=1\2, n – количество отскоков, значит, найти надо n при bn<20.
Подставим в формулу n-ого члена геометрической прогрессии наши данные:
bn=b1qn-1=400∙(12)n−1<20
Разделим обе части неравенства на 400: (12)n−1<120
Будем рассматривать случаи, начиная с n=3: (12)3−1<120; (12)2<120; (14)<120 неверно
При n=4: (12)4−1<120; (12)3<120; (18)<120 неверно
При n=5: (12)5−1<120; (12)4<120; (116)<120 неверно
При n=6: (12)6−1<120; (12)5<120; (132)<120 верно. Следовательно, после 6 отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см.
К данной задаче можно сделать проверку, а также она является простейшим способом для её решения. Рассмотрим этот способ:
1 отскок – 400 см
2 отскок – 200 см (разделили на 2, так как по условию сказано, что с каждым отскоком высота уменьшалась в 2 раза)
3 отскок – 100 см
4 отскок – 50 см
5 отскок – 25 см
6 отскок – 12,5 см, а это меньше, чем 20 см, как требуется в условии. Поэтому пишем в ответ число 6.
Ответ: 6