Задание 15MO05 (шины)
Автомобильное колесо, как правило, представляет из себя металлический диск с установленной на него резиновой шиной. Диаметр диска совпадает с диаметром внутреннего отверстия в шине. Для маркировки автомобильных шин применяется единая система обозначений. Например, 195/65 R15 (рис.1). Первое число (число 195 в приведенном примере) обозначает ширину шины в миллиметрах (параметр В на рисунке 2). Второе число (65 в приведенном примере) – процентное отношение высоты боковины (параметр Н на рисунке 2) к ширине шины, то есть 100•НВ . Последующая буква обозначает тип конструкции шины. В данном примере буква R означает, что шина радиальная, то есть нити каркаса в боковине шины расположены вдоль радиусов колеса. На всех легковых автомобилях применяются шины радиальной конструкции.
За обозначением типа конструкции шины идет число, указывающее диаметр d диска колеса в дюймах ( в 1 дюйме 25,4 мм). Таким образом, общий диаметр колеса D легко найти, зная диаметр диска и высоту боковины. Возможны дополнительные маркировки, обозначающие допустимую нагрузку на шину, сезонность использования, тип дорожного покрытия и другие параметры.
Завод производит внедорожники определенной модели и устанавливает на них колеса с шинами маркировки 215/65 R16.
📜Теория для решения:
Посмотреть решение
Задание №1. Завод допускает установку шин с другими маркировками. В таблице показаны разрешенные размеры шин.
Ширина шины (мм) | Диаметр диска (дюймы) | ||
16 | 17 | 18 | |
215 | 215/65 | 215/60 | — |
225 | 225/65; 225/60 | 225/55 | — |
235 | 235/60 | 235/55; 235/50 | 235/50 |
Шины какой наибольшей ширины можно устанавливать на автомобиль, если диаметр диска равен 17 дюймам? Ответ дайте в миллиметрах.
Решение
Смотрим по таблице на столбец, где указан диаметр диска – 17 дюймов. Движемся по столбцу вниз и просматриваем первые числа (ширину шины) в маркировках, нам надо найти наибольшую, в последней строке – это число 235. Значит наш ответ 235.
Ответ: 235
Задание №2. На сколько миллиметров радиус колеса с шиной маркировки 215/55 R17 меньше, чем радиус колеса с шиной маркировки 275/50 R17?
Решение
Прежде всего мы должны понимать, что высота колеса (диаметр колеса D) состоит из высоты шины Н, а их две, а также из диаметра диска . Если изобразить это в виде геометрического рисунка, то он будет выглядеть так, как показано на рисунке 2:
Значит, D=2H + d. Для удобства и последовательного решения задачи лучше составить таблицу, в которой и будем всё решать. В верхней строке записаны данные из условия. В первом столбце выписаны все параметры, которые будем находить.
Таблица 1
1 колесо
215/55 R17 |
2 колесо
275/50 R17 |
|
Высота Н | ||
Диаметр диска d | ||
Диаметр колеса D | ||
Радиус колеса | ||
Разница в радиусах |
Теперь начинаем заполнять каждую строчку для 1 и 2 колеса, проводя вычисления.
1 колесо
215/55 R17 |
2 колесо
275/50 R17 |
|
Высота Н | Запоминаем: для нахождения высоты выражаем второе число десятичной дробью и умножаем на первое число (так как второе число – процентное отношение высоты боковины к ширине шины). Чтобы выразить число % десятичной дробью, надо разделить его на 100! | |
55/100∙215=0,55∙215=118,25 | 50/100∙275=0,5∙275=137,5 | |
Диаметр диска d | Так как диаметр диска дан в дюймах, то надо умножить последнее число маркировки шины (17) на количество дюймов в 1 мм, т.е. на 25,4 | |
17∙ 25,4=431,8 | 431,8 | |
Диаметр колеса D | В начале решения нашей задачи, мы выяснили как найти диаметр колеса, это надо запомнить! D=2H + d. Находим диаметр в каждом случае, используя данные, которые нашли выше. | |
2∙118,25 + 431,8=668,3 | 2∙137,5 + 431,8=706,8 | |
Радиус колеса | Помним, что радиус, это половина диаметра | |
668,3:2=334,15 | 706,8:2=353,4 | |
Разница между радиусами | Для того, чтобы ответить на вопрос задания, надо найти разность между найденными радиусами | |
353,4 – 334,15=19,25 |
Ответ: 19,25
Задание №3. На сколько миллиметров увеличится диаметр колеса, если заменить колеса, установленные на заводе, колесами с шинами маркировки 235/50 R18?
Решение
Решение данного задания будем строить по принципу задания 2, так как требуется найти разницу в диаметрах между шинами заводской маркировки (смотрим в условии) 215/65 R16 и шинами маркировки 235/50 R18.
Сделаем таблицу, аналогичную таблице 1 (до строки диаметр колеса) и заполним её. Объяснения смотрим по заданию 2.
1 колесо
215/65 R16 |
2 колесо
235/50 R18 |
|
Высота Н | 0,65∙215=139,75 | 0,5∙235=117,5 |
Диаметр диска d | 16∙ 25,4=406,4 | 18∙ 25,4=457,2 |
Диаметр колеса D | 2∙139,75 + 406,4=685,9 | 2∙117,5 + 457,2=692,2 |
Разница между диаметрами колеса | Для того, чтобы ответить на вопрос задания, надо найти разность между найденными диаметрами | |
692,2 – 685,9=6,3 |
Ответ: 6,3
Задание №4. Найдите диаметр колеса автомобиля, выходящего с завода. Ответ дайте в миллиметрах.
Решение
С данными про колесо автомобиля, выходящего с завода (215/65 R16) мы встретились в задании 3. Надо найти диаметр, он найден в этом же задании 3 (смотрим таблицу с решением этого задания и находим соответствующее значение диаметра). Это значение равно 685,9.
Ответ: 685,9
Задание №5. На сколько процентов увеличится пробег автомобиля при одном обороте колеса, если заменить колеса, установленные на заводе, колесами с шинами маркировки 225/65 R16? Результат округлите до десятых.
Решение
Пробег автомобиля при одном обороте колеса – это длина окружности колеса. Значит, необходимо найти длину окружности, зная формулу l=2πR (данная формула есть в справочном материале ОГЭ). Зная, что диаметр – это два радиуса, формулу можем записать короче l=πD. Значение числа π не обязательно подставлять в формулу при решении задачи, удобнее использовать буквенное выражение.
Итак, нам надо найти диаметры двух колес, затем найти длины окружностей этих колес и сравнить их в процентном отношении. С маркировкой заводского колеса мы встречались, а данные ко второму колесу нужно найти. Итак, составим таблицу, аналогичную таблице 1, впишем в нее уже найденные значения заводского колеса (из задания 3) и найдем недостающие про «новое» колесо.
1 колесо (заводское)
215/65 R16 |
2 колесо
225/65 R16 |
|
Высота Н | 139,75 | 0,65∙225=146,25 |
Диаметр диска d | 406,4 | 406,4 (одинаковый с заводским) |
Диаметр колеса D | 685,9 | 2∙146,25+406,4=698,9 |
Длина окружности l=πD | 685,9π | 698,9π |
Итак, имеем две длины окружности, теперь надо найти, на сколько процентов увеличится пробег автомобиля при одном обороте колеса.
Заводское колесо 685,9π – 100%
Колесо на замену 698,9π – х %
Найдем значение х, используя правило пропорции: 698,9π ∙100685,9π=101,895…При решении числа π сократились, а значение % будет приближенное. Теперь найдем разницу между длинами окружностей 100% — 101, 895%=1,895%, округлим его, как сказано в условии – до десятых, получим 1,9 %. Наш ответ 1,9%.
Ответ: 1,9%
Общие советы и рекомендации по данному виду задач
Главное, с чем мы работаем в условии данной задачи, это маркировка шины.
Помните о том, что высота колеса – это его диаметр, состоящий из двух высот и одного диаметра диска (внутренняя металлическая часть колеса). Формулой D=2H+d придется пользоваться на протяжении нескольких заданий.
Для нахождения высоты переводим второе число маркировки в десятичную дробь (разделив на 100) и умножить его на первое число.
Используйте для решения таблицу, чтобы не запутаться при нахождении каких-либо данных.
Желаем удачи!
Ответ: см. решение