Задание EF17513

▿высокий уровень сложности▿ФИПИ(17513)
Полый конус с углом при вершине 2α вращается с угловой скоростью ω вокруг вертикальной оси, совпадающей с его осью симметрии. Вершина конуса обращена вверх. На внешней поверхности конуса находится небольшая шайба, коэффициент трения которой о поверхность конуса равен μ. При каком максимальном расстоянии L от вершины шайба будет неподвижна относительно конуса? Сделайте схематический рисунок с указанием сил, действующих на шайбу.
📜Теория для решения: Сила трения Динамика движения по окружности с постоянной по модулю скоростью
Посмотреть решение

Алгоритм решения

1.Построить чертеж. Указать все силы, действующие на шайбу. Выбрать систему координат.
2.Записать второй закон Ньютона для описания движения шайбы в векторном виде.
3.Записать второй закон Ньютона в виде проекций на оси.
4.Через систему уравнений вывести искомую величину.

Решение

Так как шайба вращается, покоясь на поверхности конуса, на нее действуют четыре силы: сила трения, сила тяжести, сила реакции опоры и центростремительная сила. Изобразим их на чертеже. Выберем систему координат, параллельную оси вращения.

Второй закон Ньютона в векторном виде выглядит следующим образом:

Теперь запишем этот закон в проекциях на оси ОХ и ОУ соответственно:

Так как шайба покоится относительно поверхности конуса, сила трения равна силе трения покоя:

Максимальное значение силы трения равно:

Принимая в учет силу трения покоя, проекции на оси ОХ и ОУ примут следующий вид:

Запишем систему уравнение в следующем виде:

Поделим первое уравнение на второе и получим:

Сделаем сокращения и получим:

Отсюда центростремительное ускорение равно:

Но также известно, что центростремительное ускорение равно произведению квадрата угловой скорости на радиус окружности:

Радиус окружности, по которой вращается шайба вместе с конусом, можно вычислить по формуле:

Отсюда центростремительное ускорение равно:

Выразим искомую величину L:

Подставим в это выражение выведенную для центростремительного ускорения формулу и получим:

Поделим числитель на синус угла α, чтобы упростить выражение, и получим:

.

.

.

Текст: Алиса Никитина, 1.4k 👀
Подписаться
Уведомить о
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии