Задание EF18057
На границе раздела двух несмешивающихся жидкостей, имеющих плотности ρ1 = 400 кг/м3 и ρ2 = 2ρ1, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ, чтобы выше границы раздела жидкостей была одна четверть его объёма?
📜Теория для решения: Архимедова сила
Посмотреть решение
Алгоритм решения
Решение
Запишем исходные данные:
Построим рисунок и укажем все силы, действующие на шарик:
Запишем второй закон Ньютона в векторном виде:
m→g+→FA1+→FA2=0
Запишем второй закон Ньютона в виде проекции на ось ординат:
mg=FA1+FA2
Выразим массу тела через его объем и плотность, выразим выталкивающие силы через закон Архимеда и получим:
ρVg=ρ1gV1+ρ2gV2
Преобразуем выражение, сократив ускорение свободного падения и подставив выражения для объемов погруженных в жидкости частей тела, а также выражение для плотности второй жидкости:
ρV=ρ1V4+2ρ13V4
Объемы сокращаются. Остается:
ρ=ρ14+2ρ134=7ρ14=7·4004=700 (кгм3)
Ответ: 700