Задание OM1806o

ОГЭ▿базовый уровень сложности▿другое(архив)
Найдите величину острого угла параллелограмма АВСD, если биссектриса угла А образует со стороной ВС угол, равный 41°. Ответ дайте в градусах.
📜Теория для решения:

Решение

Так как АК биссектриса, то углы ВАК и КАD равны. Обозначим ∠ВАК через х. Поскольку АВСD параллелограмм, то ∠В+∠А=180°. Т.к. АК биссектриса, то ∠А=2х. Тогда ∠В=180°–2х. Рассмотрим ∆АВК:

По теореме о сумме углов треугольника ∠ВАК+∠В+∠ВКА=180° По условию ∠ВКА = 41° Отсюда получаем:

х+ 180°–2х+410=180°

х–2х=1800–1800–41°

х=–41°

х=41°

Значит, искомый (острый) ∠А=2·410=82°

Ответ: 82

Даниил Романович | Просмотров: 175 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *