Задание EF17520

▿базовый уровень сложности▿ФИПИ(15720)

Две упругие пружины растягиваются силами одной и той же величины F. Удлинение второй пружины Δl2 в 2 раза меньше, чем удлинение первой пружины Δl1. Жёсткость первой пружины равна k1, а жёсткость второй k2 равна…

а) 0,25k1

б) 2k1

в) 0,5k1

г) 4k1


📜Теория для решения: Сила упругости и закон Гука
Выберите ответ:




Посмотреть решение

Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон Гука.
  3. Применить закон Гука к обеим пружинам.
  4. Выразить величину жесткости второй пружины.

Решение

Записываем исходные данные:

  • Первая и вторая пружины растягиваются под действием одной и той же силы. Поэтому: F1 = F2 = F.
  • Удлинение первой пружины равно: Δl1 = 2l.
  • Удлинение второй пружины вдвое меньше удлинения первой. Поэтому: Δl2 = l.

Закон Гука выглядит следующим образом:

F = k Δl

Применим закон Гука для обеих пружин:

F1 = k1 Δl1

F2 = k2 Δl2

Так как первая и вторая силы равны, можем приравнять правые части выражений. Получим:

k1 Δl1 = k2 Δl2

Перепишем выражение с учетом значения удлинений первой и второй пружин:

k1 2l = k2 l

«l» в левой и правой частях выражения взаимоуничтожаются, отсюда жесткость второй пружины равна:

k2 = 2k1

Ответ: б
Текст: Алиса Никитина, 1.7k 👀
Подписаться
Уведомить о
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии