Сила упругости и закон Гука

теория по физике 🧲 динамика

Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.

Деформация — изменение формы или объема тела.

Виды деформаций
  • сжатие;
  • растяжение;
  • изгиб (сжатие и растяжение в комбинации);
  • сдвиг;
  • кручение (частный случай сдвига).

Сила упругости обозначается как Fупр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.

Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.

Примеры упругой деформации:

  • Сжатый воздушный шарик распрямляется после того, как его отпустят.
  • Если согнуть ластик, а затем отпустить, он распрямится.
  • Мостик из доски, перекинутой через ручей, прогибается под пешеходом. Но когда пешеход ступает на землю, доска распрямляется.

Примеры пластической деформации:

  • Скомканная бумага остается скомканной и после того, как ее отпустили.
  • Пластилин сохраняет форму вылепленной из него фигуры.
  • Согнутая металлическая пластина остается согнутой.

Закон Гука

При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.

Закон Гука

Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.

x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.

Абсолютное удлинение определяется формулой:

l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.

Коэффициент жесткости тела определяется формулой:

E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.

Важно! Закон Гука не работает в случае, если деформация была пластической.

Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.

Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:

Приравняем правые части формул:

Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:

Полезные факты

Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:

F1 = F2 = Fупр

Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:

Fупр = Fтяж = mg.

Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:

Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:

Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.

Переведем сантиметры в метры: 5 см = 5∙10–2 м.

Запишем закон Гука с учетом параллельного соединения пружин:

Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:

Задание E17590

На рисунке представлен график зависимости модуля силы упругости от удлинения пружины. Какова жёсткость пружины?

а) 250 Н/м

б) 160 Н/м

в) 2,5 Н/м

г) 1,6 Н/м

Алгоритм решения

1.Записать закон Гука.
2.Выразить из закона Гука формулу для вычисления коэффициента упругости.
3.Выбрать любую точку графика и извлечь из нее исходные данные.
4.Перевести единицы измерения в СИ.
5.Вычислить коэффициент упругости, используя извлеченные из графика данные.

Решение

Запишем закон Гука:

Fупр = kx

Отсюда коэффициент упругости пружины равен:

Возьмем на графике точку, соответствующую удлинению пружины 16 см. Ей соответствует модуль силы упругости, равный 40 Н. Переведем сантиметры в метры: 16 см = 0,16 м.

Вычислим жесткость пружины:

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18489 Кубик массой 1 кг покоится на гладком горизонтальном столе, сжатый с боков пружинами (см. рисунок). Первая пружина сжата на 4 см, а вторая сжата на 3 см. Жёсткость второй пружины k2 = 600 Н/м. Чему равна жёсткость первой пружины k1?

Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон Гука.
  3. Применить закон Гука к обеим пружинам.
  4. Применить третий закон Ньютона.
  5. Выразить жесткость первой пружины.
  6. Вычислить искомую величину.

Решение

Запишем исходные данные:

  • Сжатие первой пружины x1 — 4 см.
  • Сжатие второй пружины x2 — 3 см.
  • Жесткость второй пружины k2 — 600 Н/м.

Запишем закон Гука:

Fупр = kx

Применим этот закон к обеим пружинам:

Fупр1 = k1x1

Fупр2 = k2x2

Силы упругости обеих пружин уравновешены, так как тело между ними покоится. Согласно третьему закону Ньютона:

Fупр1 = Fупр2

Отсюда:

k1x1 = k2x2

Выразим отсюда жесткость первой пружины:

Подставим известные данные и вычислим:

Внимание! В данном случае переводить единицы измерения в СИ не нужно. Отношение длин постоянно независимо от выбранной единицы измерения.

Ответ: 450

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17520

Две упругие пружины растягиваются силами одной и той же величины F. Удлинение второй пружины Δl2 в 2 раза меньше, чем удлинение первой пружины Δl1. Жёсткость первой пружины равна k1, а жёсткость второй k2 равна…

а) 0,25k1

б) 2k1

в) 0,5k1

г) 4k1

Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон Гука.
  3. Применить закон Гука к обеим пружинам.
  4. Выразить величину жесткости второй пружины.

Решение

Записываем исходные данные:

  • Первая и вторая пружины растягиваются под действием одной и той же силы. Поэтому: F1 = F2 = F.
  • Удлинение первой пружины равно: Δl1 = 2l.
  • Удлинение второй пружины вдвое меньше удлинения первой. Поэтому: Δl2 = l.

Закон Гука выглядит следующим образом:

F = k Δl

Применим закон Гука для обеих пружин:

F1 = k1 Δl1

F2 = k2 Δl2

Так как первая и вторая силы равны, можем приравнять правые части выражений. Получим:

k1 Δl1 = k2 Δl2

Перепишем выражение с учетом значения удлинений первой и второй пружин:

k1 2l = k2 l

«l» в левой и правой частях выражения взаимоуничтожаются, отсюда жесткость второй пружины равна:

k2 = 2k1

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить


Алиса Никитина | 📄 Скачать PDF | Просмотров: 1.5k | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *