👀 439 |

Сила упругости и закон Гука

теория по физике 🧲 динамика

Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.

Деформация — изменение формы или объема тела.

Виды деформаций
  • сжатие;
  • растяжение;
  • изгиб (сжатие и растяжение в комбинации);
  • сдвиг;
  • кручение (частный случай сдвига).

Сила упругости обозначается как Fупр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.

Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.

Примеры упругой деформации:

  • Сжатый воздушный шарик распрямляется после того, как его отпустят.
  • Если согнуть ластик, а затем отпустить, он распрямится.
  • Мостик из доски, перекинутой через ручей, прогибается под пешеходом. Но когда пешеход ступает на землю, доска распрямляется.

Примеры пластической деформации:

  • Скомканная бумага остается скомканной и после того, как ее отпустили.
  • Пластилин сохраняет форму вылепленной из него фигуры.
  • Согнутая металлическая пластина остается согнутой.

Закон Гука

При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.

Закон Гука

Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.

x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.

Абсолютное удлинение определяется формулой:

l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.

Коэффициент жесткости тела определяется формулой:

E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.

Важно! Закон Гука не работает в случае, если деформация была пластической.

Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.

Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:

Приравняем правые части формул:

Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:

Полезные факты

Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:

F1 = F2 = Fупр

Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:

Fупр = Fтяж = mg.

Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:

Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:

Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.

Переведем сантиметры в метры: 5 см = 5∙10–2 м.

Запишем закон Гука с учетом параллельного соединения пружин:

Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:


Алиса Никитина | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *