👀 110 |

Правило моментов при решении задач

теория по физике 🧲 статика

Легче всего решать задачу, если все приложенные к телу силы параллельны — тогда можно получить ответ, используя лишь правило моментов. Если же силы непараллельные, то иногда для получения ответа требуется дополнительно применять второй закон Ньютона.

Параллельные силы

Алгоритм решения задач на правило моментов (параллельные силы)
  • Выполнить чертеж. Указать на нем все силы с точкой их приложения и направлением действия. В этом вам поможет таблица.
СилаТочка приложенияНаправление
Сила тяжести, действующая на грузЦентр грузаВертикально вниз
Сила тяжести, действующая на однородный стерженьЦентр тяжестиВертикально вниз
Сила тяжести, действующая на неоднородный стерженьЦентр масс, положение которого указывают в условии задачиВертикально вниз
ВесТочка опоры или подвесаВес тела направлен противоположно вектору силы нормальной реакции опоры или вектору силы натяжения подвеса
Сила реакции опорыТочка соприкосновения стержня и опорыПерпендикулярно вверх
Сила натяжения нитиТочка соединения с подвесомВдоль оси подвеса
  • Выбрать положение оси вращения. Обычно ось выбирают в месте, где находится неизвестная сила или сила, искать которую не нужно.
  • Указать значение плеч. Если в задаче нужно указать некоторое расстояние (к примеру, от центра стержня или от места приложения некоторой силы), то это расстояние следует обозначать за x. Размер плеч сил нужно определять с учетом размеров стержня и расстояния x.
  • Записать правило моментов и решить задачу.

Типовы задачи на правило моментов при параллельных силах

Прямая неоднородная балка длиной l и массой m подвешена за концы на вертикально натянутых тросах. Балка занимает горизонтальное положение. Найдите силу натяжения первого троса T2, если центр тяжести балки находится на расстоянии a от левого конца балки.

Для решения задачи в качестве положения оси вращения удобно выбрать точку приложения силы натяжения первого троса (потому что ее искать не нужно). Тогда плечом силы тяжести будет расстояние a, а плечом силы натяжения второго троса — l. Поэтому правило моментов можно записать так:

T2l = mga

T2 = mga/l

Рельс длиной l и массой m поднимают равномерно в горизонтальном положении на двух вертикальных тросах, первый из которых укреплен на конце рельса, а второй — на расстоянии x от другого конца. Определите натяжение второго троса.

В этой задаче положение оси вращения также удобно выбрать в точке О, соответствующей точке приложения силы натяжения нити первого троса (так как ее искать не нужно). Тогда плечом силы натяжения второго троса будет служить разность длины рельса и расстояния x, а плечом силы тяжести — половина длины рельса. Поэтому правило моментов примет вид:

mgl/2 = T2(l – x)

T2 = mgl2(lx)..

Пример №1. К левому концу невесомого стержня прикреплен груз массой 3 кг (см. рисунок). Стержень расположили на опоре, отстоящей от груза на 0,2 длины. Груз какой массы надо подвесить к правому концу, чтобы стержень находился в равновесии?

Условие равновесие будет выполняться, если произведение силы тяжести первого груза на ее плечо будет равно произведению силы тяжести второго груза на ее плечо:

Fтяж1d1 = Fтяж2d2

Согласно рисунку, второй груз будет подвешен на расстоянии 0,8 от опоры. Следовательно:

Fтяж2=Fтяж2d1d2..=m1gd1d2..

m2g=m1gd1d2..

m2=m1d1d2..=3·0,20,8..=0,75 (кг)

Непараллельные силы

Алгоритм решения задач на правило моментов (непараллельные силы)
  • Выполнить чертеж и указать все силы. Правильно определить точку приложения и направление сил поможет таблица:
СилаТочка приложенияНаправление
Сила реакции опорыТочка соприкосновения с опоройПерпендикулярно плоскости опоры
Сила трения покояТочка соприкосновения с опоройВ сторону возможного движения
Сила тяжестиЦентр масс (у однородных тел центр масс совпадает с центром тела)Вертикально вниз
Архимедова силаЦентр масс погруженной части телаВертикально вверх
  • Определить плечи сил как кратчайшее расстояние между осью вращения и направлением действия силы.
  • Записать правило моментов и решить задачу.

Внимание! Иногда для решения задачи может потребоваться использование второго закона Ньютона в проекциях на оси Ox и Oy.

Типовы задачи на правило моментов при непараллельных силах

Рабочий удерживает за один конец доску массой m так, что она образует угол α с горизонтом, опираясь о землю другим концом. С какой силой рабочий удерживает доску, если эта сила перпендикулярна доске?

За точку равновесия примем точку касания доски с землей. Плечо силы тяжести будет равно нижнему катету треугольника, образованного при опускании перпендикуляра к земле из точки приложения этой силы:

d1 = l cosα/2

Плечо силы, с которой рабочий поднимает доску, равно длине доски:

d2 = l

Отсюда:

mglcos.α2..=Fl

F=2lmglcos.α..=2mgcos.α..

В гладкий высокий цилиндрический стакан с внутренним радиусом R помещают карандаш длиной l и массой m. С какой силой действует на стакан верхний конец карандаша?

За точку равновесия примем нижнюю точку карандаша. Сила давления верхнего конца карандаша на стакан по модулю будет равна силе нормальной реакции опоры в этой точке. Поэтому плечо ее силы будет равно произведению длины карандаша на синус угла между ним и дном стакана:

d1 = l sinα

Минимальным расстоянием между линией действия силы тяжести и точкой равновесия будет половина произведения длины карандаша на косинус угла между ним и дном стакана:

d2 = l сosα/2

Отсюда:

Nl sinα = mgl сosα/2

N=mglcos.α2lsin.α..

Плечо силы тяжести также равно радиусу стакана, а плечо силы реакции опоры можно найти из теоремы Пифагора. Отсюда:

N=mgRl24R2..

Колесо радиусом R и массой m стоит перед ступенькой высотой h. Какую наименьшую горизонтальную силу надо приложить, чтобы оно могло подняться на ступеньку? Сила трения равна нулю.

За точку равновесия примем точку касания колеса со ступенькой. Плечо силы тяжести является катетом треугольника, образованного с радиусом колеса и плечом прикладываемой силы. Плечо этой силы равно разности радиуса и высоты ступеньки.

d1=R2d22

d2 = R  h

Отсюда:

mgR2d22=F(Rh)

F=mgR2d22Rh..=mgh(2Rh)Rh..

Лестница массой m приставлена к гладкой вертикальной стене пол углом α. Найдите силу давления лестницы на стену. Центр тяжести лестницы находится в ее середине.

Плечо силы тяжести равно половине произведения длины лестницы на косинус угла α. Плечо силы реакции опоры равно произведению этой длины на синус α. Поэтому правило моментов записывается так:

Nlsin.α=mglcos.α2..

Отсюда:.

N=mglcos.α2lsin.α..=mg2tan.α..

Лестница длиной l приставлена к идеально гладкой стене под углом α к горизонту. Коэффициент трения между лестницей и полом μ. На какое расстояние x вдоль лестницы может поднять человек, прежде чем лестница начнет скользить? Массой лестницы пренебречь.

Правило моментов:

mgxcos.α=N2lsin.α

Второй закон Ньютона в проекциях на оси Ox и Oy соответственно:

Fтр – N2 = 0

N1 – mg = 0

Сила трения:

Fтр = μmg = N2

Следовательно:

mgxcos.α=μmglsin.α

x=μmglsin.αmgxcos.α..=μltan.α

Однородная лестница приставлена к стене. При каком наименьшем угле α между лестницей и горизонтальным полом лестница сохранит равновесие, если коэффициент трения между лестницей и полом μ1, а между лестницей и стеной — μ2? Правило моментов:

mgl2..cos.α=Fтр2lcos.α+N2lsin.α

Второй закон Ньютона в проекциях на ось Ox:

Fтр1 – N2 = 0

μ1N1 N2 = 0

На ось Oy: Fтр2 + N1 – mg = 0

μ2N2 +N2μ1.. = mg

N2(μ2+1μ1..)=mg

N2=mgμ2+1μ1....=mgμ1μ1μ2+1..

Fтр2=mgN1=mgN2μ1..=mgmgμ1μ2+1..=mg(11μ1μ2+1..)

mgl2..cos.α=mg(11μ1μ2+1..)lcos.α+mgμ1μ1μ2+1..lcos.α

Преобразуем выражение и получим:

tan.α=1μ1μ21μ1..

Какую минимальную горизонтальную силу нужно приложить к верхнему ребру куба массой m, находящегося на горизонтальной плоскости, чтобы перекинуть его через нижнее ребро? Правило моментов примет вид:

mgl2..cos.α=Flsin.α

У куба угол α равен 45 градусам, а синус и косинус этого угла равны. Длины диагонали взаимоуничтожаются. Остается:

F=mg2..

Пример №2. Невесомый стержень длиной 1 м, находящийся в ящике с гладким дном и стенками, составляет угол α = 45о с вертикалью (см. рисунок). К стержню на расстоянии 25 см от его левого конца подвешен на нити шар массой 2 кг. Каков модуль силы N, действующий на стержень со стороны левой стенки ящика?

25 см = 0,25 м

Пусть точкой равновесия будет точка касания нижнего конца стержня с дном ящика. Тогда плечом силы тяжести будет:

d1 = (l – 0,25)sinα

Плечом силы реакции опоры будет:

d2 = l cosα

Запишем правило моментов:

mg(l0,25)sin.α=Nlcos.α

Отсюда:

N=mg(l0,25)sin.αlcos.α..

Так как косинус и синус угла 45о равны, получим:

N=mg(l0,25)l..=2·10(10,25)1..=15 (Н)


Алиса Никитина | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *