Фотоны

теория по физике 🧲 квантовая физика

Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо).

Энергия и импульс фотона

Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, что порция света по своим свойствам напоминает то, что принято называть частицей. Поэтому свойства света, обнаруживаемые при его излучении и поглощении, стали называть корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.

Как частица, фотон обладает определенной порцией энергии, которая равна . Энергию фотона часто выражают не через частоту v, а через циклическую частоту:ω = 2πν

При этом в формуле для энергии фотона в качестве коэффициента пропорциональности (постоянной Планка) используется другая величина, обозначаемая и равная:

=h2π..1,0545726·1034 (Дж·с)

Учитывая это, формула для определения энергии фотона примет вид:

Е=ω

Согласно теории относительности, энергия частиц связана с массой следующим соотношением:

Е=mс2

Так как энергия фотона равна , то, следовательно, его масса m получается равной:

m=hνс2..

У фотона нет собственной массы, поскольку он не может существовать в состоянии покоя. Появляясь, он уже имеет скорость света. Поэтому формула выше показывает только массу движущегося фотона.

По известной массе и скорости фотона можно найти его импульс:

p=mc=hνc..=hλ..

Внимание! Вектор импульса фотона всегда совпадает с направлением распространения луча света.

Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее свет проявляет свои корпускулярные свойства. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. К примеру, фотоны, свойственные зеленому свету, имеют энергию, равную всего 4∙10–19 Дж. Несмотря на это, человеческий глаз способен различать изменение освещенности, даже если оно измеряется единичными квантами.

Пример №1. Каков импульс фотона, если длина световой волны λ = 5∙10–7 м?

Корпускулярно-волновой дуализм

Законы теплового излучения и фотоэффекта объясняются только при условии, если начать считать свет потоком частиц. Однако нельзя отрицать тот факт, что свету присущи такие явления как интерференция и дифракция света. Но эти явления встречаются только у волновых процессов. Поэтому в современной физике принято считать свет с дуализмом, иначе — двойственностью свойств.

Когда свет распространяется в средах, он проявляет волновые свойства. Когда он начинает взаимодействовать с веществом (поглощаться или излучаться), проявляются корпускулярные свойства (свойства частицы).

Гипотеза де Бройля

Длительное время электромагнитное поле представлялось как материя, которая распределена в пространстве непрерывно. Электроны же представлялись как очень маленькие частицы материи. Не нет ли здесь ошибки, обратной той, которая была допущена при определении света? Может быть, электрон и другие частицы тоже обладают волновыми свойствами. Такую мысль высказал в 1923 г. французский ученый Луи де Бройль.

Он предположил, что с движением частиц связано распространение некоторых волн. И ученому удалось найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов. Если длину волны обозначить через λ, а импульс — через р, то получится, что:

λ=hp..

Эта формула носит название формулы де Бройля, которая является одной из основных в разделе квантовой физики.

В будущем волновые свойства частиц, о которых предположил де Бройль, были обнаружены экспериментально. Так, удалось получить дифракцию электронов и других частиц на кристаллах. В этих случаях получалась почти такая же картина, как в случае с рентгеновскими и другими лучами. И формула де Бройля также нашла экспериментальное доказательство. Волновые свойства микрочастиц описываются квантовой механикой.

Квантовая механика — раздел физики, изучающий теорию движения микрочастиц.

Внимание! Законы Ньютона в квантовой физике в большинстве случаем не могут быть применены.

Давление света

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, около 4∙10-7 Па.

Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняет следующие факты:

  • хвосты комет направлены от ядра кометы в сторону, противоположную Солнцу;
  • изменение орбит искусственных спутников Земли.

информация к уроку Давление света

Свет — это поток фотонов с импульсом:

p=mc

При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит, на тело действует сила.

Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае?

Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.

Задание EF17985

За время t=4 с детектор поглощает N=6⋅105 фотонов падающего на него монохроматического света. Поглощаемая мощность P=5⋅10−14 Вт. Какова длина волны падающего света?

Ответ:

а) 0,4 мкм

б) 0,6 мкм

в) 520 нм

г) 780 нм

Алгоритм решения

1.Записать исходные данные.
2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью.
3.Выполнить решение в общем виде.
4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Количество фотонов: N = 6∙105 шт.
 Поглощенная мощность: P = 5∙10–14 Вт.
 Время: t = 4 с.

Вся энергия фотонов будет поглощена детектором. Согласно закону сохранения энергии:

Nhν=Pt

Длина волны определяется формулой:

λ=cν..

Отсюда частота равна:

ν=cλ..

Подставим это выражение в записанный закон сохранения энергии:

Nhcλ..=Pt

Отсюда длина волны равна:

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17986

При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.

Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.

Алгоритм решения

1.Описать процессы, происходящие во время обоих опытов.
2.С помощью физических формул установить, как изменяется сила давления света.

Решение

В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:

pф=hνc..

Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:

pп=Nhνc..

В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:

F1=pпt..=Nt..hνc..

В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:

pф=pфп

Поэтому отраженная волна будет иметь импульс:

pов=Npф=Nhνc..

N — количество отраженных фотонов.

В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:

Δp=pовpп=NpфNpф=(N+N)pф

Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:

Δ(pп+pпл)=0

Отсюда:

Δpпл=Δpп

Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:

F2=pплt..=N+Nt..hνc..

Если зеркала отражает хорошо, то N ≈ N´. Тогда:

F22F1

Отсюда видно, что сила давления света увеличится вдвое.


pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18201

Излучением лазера с длиной волны 3,3⋅10−7 м за время 1,25⋅104 с был расплавлен лёд массой 1 кг, взятый при температуре 0 °С, и полученная вода была нагрета на 100 °С. Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.

Алгоритм решения

1.Записать исходные данные.
2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения.
3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду.
4.Из полученного выражения выразить количество фотонов, излученных лазером за время t.
5.Записать формулу для количества фотонов, выделяемых за время 1 с.
6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем не только те данные, что есть в условии задачи, но и табличные данные, которые нам понадобятся в ходе решения задачи:

 Масса льда: m = 1 кг.
 Удельная теплота плавления льда: λльда = 3,4∙105 Дж/кг.
 Удельная теплоемкость воды: c = 4200 Дж/(кг∙оС).
 Начальная температура льда/воды: t1 = 0 оС.
 Конечная температура воды: t2 = 100 оС.
 Коэффициент полезного действия: η = 50%.
 Длина световой волны: λсвета = 3,3∙10–7.
 Время проведения всего опыта: t = 1,25∙104.

Чтобы лед расплавился, а образовавшаяся вода нагрелась до температуры кипения, нужно сообщить ему следующее количество энергии:

Q=Q1+Q2=mλльда+mc(t2t1)

Так как КПД равен 50% (0,5), то это количество теплоты равно половине энергии, выделенной лазером:

Q=ηE

mλльда+mc(t2t1)=ηE

Энергия, выделенная лазером, равна сумме энергий каждого из излученных фотонов, количество которых будет равно N:

E=Nhν

Но частота световой волны равна:

ν=cλсвета..

Тогда:

E=Nhcλсвета..

Отсюда:

Nhcλсвета..

Теперь мы можем записать:

mλльда+mc(t2t1)=ηNhcλсвета..

Выразим количество излученных фотонов за все время:

N=λсвета(mλльда+mc(t2t1))ηhc..

Если разделить это выражение на время проведения опыта, то мы найдем количество фотонов, излученных за 1 секунду:

N1с=λсвета(mλльда+mc(t2t1))ηhct..


pазбирался: Алиса Никитина | обсудить разбор | оценить


Алиса Никитина | Просмотров: 536 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *