Отражение и преломление света. Законы геометрической оптики.

теория по физике 🧲 оптика

Основные законы геометрической оптики были известны задолго до установления физической природы света. Большая часть из них выводятся из общего принципа, описывающего поведение волн. Впервые этот принцип выдвинул современник Ньютона Христиан Гюйгенс.

Принцип Гюйгенса

Каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн.

Чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t + ∆t, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Этот принцип подходит для описания волн любой природы (световых, механических, электромагнитных и пр.).

https://sites.google.com/site/adrosk386/_/rsrc/1367760980443/home/volnovaa-priroda-sveta/princip-gujgensa/capture-20130504-120637.png

Для механических волн принцип Гюйгенса имеет наглядное толкование: частицы среды, до которых доходят колебания, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.

Закон прямолинейного распространения света

В оптически однородной среде свет распространяется прямолинейно.

Опытным доказательством этого закона служат резкие тени, отбрасываемые непрозрачными телами при освещении светом источника небольших размеров («точечного источника»).

Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет.

Внимание!

Законы геометрической оптики выполняются приближенно при условии, что размеры препятствий на пути световых волн много больше длины волны. Так, закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через очень малые отверстия.

Пример №1. Здание, освещенное солнечными лучами, отбрасывает тень длиной L = 36 м. Вертикальный шест высотой h = 2,5 м отбрасывает тень длиной l = 3 м. Найдите высоту H здания.

Так как шест и здание расположены вертикально, они параллельны. Так как на них светит один и тот же источник света, то угол падения лучей одинаков. Следовательно, треугольники, образованные стеной зданий, лучом солнца и землей, а также землей, лучом солнца и шестом, подобны. Отсюда можно сделать вывод, что отношение высоты здания к высоте шеста будет отношению длины тени здания к длине тени шеста:

Hh..=Ll..

H2,5..=363..=12

H=12·2,5=30 (м)

Закон отражения света

Рассмотрим отражение плоской волны (см. рис. ниже).

https://lh3.googleusercontent.com/proxy/gK8hs-HtpwFdBZfFk59D9W3LRcl5tX_6yCwp9Oduj_30HFjyqWDRnFeMeqnDYT7tUmT6GqbVWx1ivd_HexOQldsoOk0

Пусть:

  • MN — отражающая поверхность.
  • A1A и B1B — два параллельных луча падающей плоской волны.
  • AC — волновая поверхность плоской волны.
  • α и γ— угол падения и отражения лучей A1A и B1B.
Определение

Плоская волна — волна, волновые поверхности которой представляют собой плоскости.

Угол падения — угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения — угол между перпендикуляром к отражающей поверхности и отраженным лучом.

Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред. Различные участки волновой поверхности AC достигают отражающей границы неодновременно. Возбуждение колебаний в точке A начинается раньше, чем в точке B, на время Δt=CBv.. (v — скорость волны).

В момент, когда волна достигнет точки B, и в этой точке начнется возбуждение колебаний, вторичная волна в точке A уже будет представлять собой полусферу радиусом r = AD = v∆t = CB. Радиусы вторичных волн от источников, находящихся между точками A и B, меняются так, как показано на рисунке выше.

Огибающей вторичных волн является плоскость DB, касательная к сферическим поверхностям. Она является волновой поверхностью отраженной волны. Отраженные лучи AA2 и BB2 перпендикулярны волновой поверхности DB. Между ними образуется угол γ, являющийся углом отражения.

Так как AD = CB и треугольники ADB и ACB прямоугольные, то углы DBA и CAB равны. Но угол α= CAB, а γ= DBA как углы с перпендикулярными сторонами. Следовательно, α=γ.

Закон отражения света

Угол падения равен углу отражения. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения, лежат в одной плоскости.

Пример №2. Луч света падает на плоское зеркало. Угол падения α равен 20°. Чему равен угол между падающим и отражённым лучами?

Поскольку, согласно закон отражения света, угол падения равен углу отражения, то угол между падающим и отражённым лучами равен удвоенному углу α. Следовательно, он равен 40°.

Закон преломления света

На границе двух разнородных сред свет меняет направление распространения. Часть его энергии возвращается в первую среду, то есть, происходит отражение света. Если же вторая среда прозрачна, то часть света проходит через границу, разделяющую первому и вторую среду. При этом он меняет свое направление. Это явление называется преломлением света.

Преломление света на границе двух сред легко продемонстрировать с помощью стакана, воды и карандаша. Если опустить карандаш в пустой стакан, то он будет выглядеть таким же прямым, как и всегда (см. рисунок слева). Если же опустить карандаш в стакан, заполненный водой, мы увидим, что его часть под водой будто бы «преломилась».

Закон преломления света, который определяет взаимное расположение луча падающего, луча преломленного и перпендикуляра, восстановленного в точке падения, был открыт опытным путем в XVII веке. Но его можно доказать, основываясь на принципе Гюйгенса.

Известно, что скорость света достигает максимального значения только в вакууме. При распространении в среде скорость света снижается. Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость распространения волны в первой среде как v1, а во второй — как v2.

Пусть на плоскую границу раздела двух сред (к примеру, из воздуха в воду) падает плоская световая волна (см. рисунок выше). Волновая поверхность AC перпендикулярна лучам A1A и B1B. Поверхности MN сначала достигнет луч A1A. B1B достигнет ее через некоторое время, которое можно определить отношением:

Δt=CBv1..

В момент, когда вторичная волна в точке B только начинает возбуждаться, волна от точки A уже имеет вид полусферы, радиус которой определяется выражением:

AD=v2Δt

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае, ею является плоскость BD. Она является огибающей вторичных волн.

Угол падения α равен CAB в треугольнике ABC (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно:

CB=v1Δt=ABsin.α

Угол преломления β равен углу ABD в треугольнике ABD. Поэтому:

AD=v2Δt=ABsin.β

Поделим первое выражение на второе и получим:

sin.αsin.β..=v1v2..=n

Закон преломления света

Падающий луч, луч преломленный и перпендикуляр, восстановленный в точке падения, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред.

Пример №3. Угол падения параллельных лучей на плоскопараллельную пластинку равен 60о. Найдите расстояние между точками, в которых из пластины выходят параллельные лучи, если расстояние между лучами, прошедшими сквозь пластину, равно 0,7 м.

Сначала построим рисунок хода лучей до пластины, внутри нее и после нее. Расстояние между лучами, прошедшими сквозь пластину, обозначим за l. Оно равна длине перпендикуляра, соединяющего эти лучи.

Значение величины угла β, который составляет нормаль к пластине и направлением распространения луча в ней, определяется законом преломления света:

sin.αsin.β..=n

Луч выходит из пластины под некоторым углом γ таким, что:

sin.βsin.γ..=1n..

Следовательно:

n=sin.γsin.β..=sin.αsin.β..

Отсюда: sin.γ=sin.α или γ= α. Если вспомнить геометрические законы, можно сделать вывод, что расстояние между пластинами, являющееся гипотенузой прямоугольного треугольника, можно вычислить путем деления катета на косинус угла между ним и гипотенузой:

L=lcos.60°..=0,70,5..=1,4 (м)

Величина n — относительный показатель преломления.

Физический смысл показателя преломления заключается в том, что он равен отношению скоростей света в средах, на границе между которыми происходит преломление.

n=v1v2..

Различают также абсолютный показатель преломления — показатель преломления среды относительно вакуума. Он равен синусу угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.

Поскольку в вакууме скорость света максимальна, абсолютный показатель преломления можно выразить формулой:

n=cv1..

где v1 — скорость света в среде, c — скорость света в вакууме.

Между абсолютными и относительными показателями преломления есть взаимосвязь. Пусть скорость распространения света в первой среде равна v1, во второй — v2. Тогда абсолютные показатели преломления для первой и второй среды равны:

n1=cv1..

n2=cv2..

Тогда относительный показатель преломления при переходе света из первой среды во вторую будет равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

n=v1v2..=n2n1..

Внимание!

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой, а среду с большим абсолютным показателем преломления — оптически более плотной.

Пример №4. Определить показатель преломления воды относительно алмаза.

n=nвnа..

Абсолютные показатели преломления воды и алмаза — постоянные табличные величины.

n=1,332,42..0,55

Полное отражение

Закон преломления света позволяет объяснить интересное и практически важное явление — полное отражение света.

При прохождении света из оптически менее плотной среды в более плотную, к примеру, из воздуха в стекло или воду, v1>v2. Следовательно, согласно закону преломления показатель преломления n > 1. Поэтому α > β (см. рисунок а). В результате преломления луч приближается к перпендикуляру, восстановленному к точке падения луча.

Если же направить луч света в обратном направлении — из оптически более плотной среды в оптически менее плотную вдоль ранее преломленного луча (см. рисунок б), то закон преломления запишется следующим образом:

sin.αsin.β..=v2v1..=1n..

Преломленный луч по выходе из оптически более плотной среды будет направлен по линии ранее падавшего луча, поэтому α < β, т. е. преломленный луч в этом случае отдаляется от перпендикуляра, восстановленного в точке падения к границе раздела сред. По мере увеличения угла α угол преломления β также увеличивается. При этом, согласно закону преломления света, он всегда будет больше угла α. Наконец, при некотором угле падения α значение угла преломления β приблизится к 90°, и преломленный луч будет направлен почти по границе раздела двух сред (см. рисунок в). Наибольшему возможному углу преломления β = 90° соответствует угол падения α0.

Попробуем выяснить, что произойдет при α > α0. При падении света на границу двух сред световой луч, как мы уже говорили ранее, частично отражается и частично преломляется. Но при α > α0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.

Примеры полного отражения света:

  • блеск от ограненного алмаза;
  • блеск капель росы на солнце;
  • внутреннее отражение предметов, находящихся под водой.

Определение

Угол полного отражения — угол падения α0, соответствующий углу преломления 90°.

При sin β = 1 (что соответствует углу 90°) угол полного отражения можно определить по формуле:

sin.α0=1n..

Пример №5. Луч света, идущий из толщи воды, полностью отражается от ее поверхности. Выйдет ли луч в воздух, если на поверхность воды налить слой кедрового масла?

Синус угла полного отражения для луча, идущего из воды к воздуху:

sin.α0=1n1..

sin.α0 n1=1

где n1 — показатель преломления воды.

Запишем закон преломления света для случая, когда на поверхность воды налито масло:

Тогда синус угла полного отражения для луча, идущего из воды к маслу:

sin.α0sin.β..=n2n1..

где n2 — показатель преломления масла.

Тогда:

sin.β=1n2..

Эта формула соответствует случаю, когда угол β является углом полного отражения. Следовательно, луч света за пределы масляной пленки в воздух не выйдет.

Практическое применение явления полного отражения света

Явление полного отражения света применяют в волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон — световодов. Световод — это стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления.

За счет многократного полного отражения свет может быть направлен, либо по прямому, либо по изогнутому пути (см. рисунок слева). Волокна собираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (см. рисунок справа). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.

В последнее время волоконная оптика широко используется для быстрой передачи компьютерных сигналов. По волоконному кабелю передается модулированное лазерное излучение.

Задание EF17610

Ученик провёл опыт по преломлению монохроматического света, представленный на фотографии.

Затем вся установка была помещена в воду. Как изменятся частота световой волны, длина волны, падающей на стекло, и угол преломления?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Алгоритм решения

1.Описать эксперимент, проведенный учеником.
2.Установить, как изменяется частота световой волны при перемещении установки из воздуха в воду.
3.Установить, как при этом изменяется длина световой волны.
4.Установить, как при этом изменяется угол преломления.

Решение

Ученик направил луч монохроматического света на стекло под углом 30 градусов к нормали. При этом луч вышел под углом 20 градусов. Это говорит о том, что свет из менее плотной оптической среды попал в более плотную.

Частота световой волны — характеристика, не зависящая от условий распространения этой волны. Поэтому при перемещении установки из воздуха в воду частота останется прежней.

Чтобы установить, как меняется длина световой волны и угол преломления. Нужно рассчитать изменение показателя преломления света. Относительный показатель преломления в первом и втором опыте будет соответственно равен:

sin.αsin.β..=nвоздухстекло

sin.αsin.γ..=nводастекло

Относительные показатели преломления можем выразить через абсолютные:

nвоздухстекло=nстеклоnвоздух..

nводастекло=nстеклоnвода..

Абсолютный показатель преломления — табличная величина. Мы возьмем приблизительный значения: для воздуха — 1, для воды — 1,33, для стекла — 1,5. В действительности абсолютный показатель преломления стекла может составлять от 1,43 до 2,17. Но это не столь важно, поскольку важно лишь то, что он в любом случае больше абсолютного показателя преломления воды.

Получим:

nвоздухстекло=1,51..=1,5

nводастекло=1,51,33..1,3

Видно, что при перемещении из воздуха показатель преломления уменьшился. Тогда:

sin.αsin.γ..=1,3

Так как числитель в левой части уравнения остался прежним, а число в правой части уменьшилось, то синус угла преломления увеличился. Поскольку синус угла находится в прямой зависимости от величины угла, то и угол преломления увеличился.

Длина волны определяется формулой:

λ=vν..

Учтем, что скорость распространения света в более плотной среде уменьшается. Если скорость уменьшилась, то длина воды тоже уменьшилась, поскольку между ними существует прямо пропорциональная зависимость.

Ответ: 321

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18593

Свет падает на горизонтальное плоское зеркало. Угол между падающим и отражённым лучами равен 60°. Каким станет угол между этими лучами, если повернуть зеркало на 20°, как показано на рисунке?

Алгоритм решения

1.Записать известные данные.
2.Зарисовать рисунок после поворота зеркала.
3.Представить решение задачи в общем виде.
4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Угол между падающим и отраженным углом: γ1 = 60о.
 Угол поворота угла: φ = 20о.

Построим рисунок с учетом того, что зеркало повернули:

Поскольку угол падения, равен углу отражения, то:

α1+β1=60°

α1=β1

2α1=60°

α1=60°2..=30°

На рисунке видно, что после переворачивания зеркала угол падения α увеличился на угол переворота:

α=α1+φ=30°+20°=50°

Так как угол падения равен углу отражения, то:

α=β=50°

Отсюда угол между лучом падающим и лучом отраженным равен:

γ=α+β=50°+50°=100°

.

Ответ: 100

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF19015

На дне бассейна с водой находится небольшая лампочка. На поверхности воды плавает круглый плот – так, что центр плота находится точно над лампочкой. Определите глубину бассейна Н, если минимальный радиус плота, при котором свет от лампочки не выходит из воды, R = 2,4 м. Сделайте рисунок, поясняющий решение. Толщиной плота пренебречь. Показатель преломления воды n = 4/3.

Алгоритм решения

1.Записать исходные данные.
2.Сделать рисунок.
3.Записать закон полного отражения.
4.Выполнить решение в общем виде.
5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Радиус круглого плота: R = 2,4 м.
 Показатель преломления воды: n = 4/3.

Выполним рисунок. Проведем перпендикуляры к поверхности: перпендикуляр от точечного источника света, а также нормали, проведенные через края плота.

Чтобы свет лампочки не выходил из воды, лучи света от лампочки, направленные к границе между краем плота и поверхностью воды, должны полностью отражаться. Это возможно только при выполнении следующего условия:

sin.α=1n..

Поскольку вершина S треугольника ABS лежит строго под центром круглого плота, этот треугольник является равнобедренным. Причем перпендикуляр, восстановленный к основанию треугольника ABSO — делит это основание на 2 равные стороны. Одновременно он делит угол S этого треугольника на 2 равные части, так как он является одновременно перпендикуляром, медианой и биссектрисой.

Пусть α — угол падения луча. Тогда угол OSB будет равен этому углу как накрест лежащие углы.

Треугольник OSB — прямоугольный. Причем искомая величина — глубина бассейна — является одним из его катетов. Из курса геометрии известно, что катет равен произведения второго катета на котангенс прилежащего угла. Второй катет в нашем случае — радиус круглого плота. Прилежащий угол равен углу падения. Следовательно:

H=Rcot.α

Котангенс угла определяется как отношение косинуса этого угла к его синусу:

cot.α=cos.αsin.α..

Косинус угла можем выразить из основного тригонометрического тождества:

sin2.α+cos2.α=1

Следовательно:

cos.α=1sin2.α

Отсюда котангенс равен:

cot.α=1sin2.αsin.α..

Тогда глубина бассейна:

H=Rcot.α=R1sin2.αsin.α..

Из закона полного отражения вспомним, что синус угла падения есть величина, обратная показателю преломления воды. Тогда эта формула примет вид:

H=R1(1n..)21n....=Rn11n2..

Подставим известные данные и получим:

H=2,4·43....11(43..)2..=3,21916..=3,274..0,8·2,65=2,12 .м.

.

Ответ: 2,12

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17706

Стеклянную линзу (показатель преломления стекла nстекла = 1,54), показанную на рисунке, перенесли из воздуха (nвоздуха = 1) в воду (nводы = 1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы?

Ответ:

а) Фокусное расстояние уменьшилось, оптическая сила увеличилась.

б) Фокусное расстояние увеличилось, оптическая сила уменьшилась.

в) Фокусное расстояние и оптическая сила увеличились.

г) Фокусное расстояние и оптическая сила уменьшились.

Алгоритм решения

1.Установить характер преломления лучей линзой при ее перемещении из воздуха в воду.
2.Выяснить, как от этого зависят фокусное расстояние и оптическая сила линзы.

Решение

Чтобы узнать, что произойдет с лучами света при прохождении их сквозь линзу, погруженную воду, найдем относительные показатели преломления:

nвоздухстекло=nстеклоnвоздух..=1,541..=1,54

nводастекло=nстеклоnвода..=1,541,33..1,16

Видно, что относительный показатель преломления уменьшился. Значит, преломленный линзой луч будет менее отклоняться от нормали, проведенной в точке падения на линзу. Следовательно, чтобы достигнуть главной оптической оси, ему придется пройти большее расстояние. Это говорит о том, что фокусное расстояние линзы увеличится.

Оптическая сила линзы — величина, обратная ее фокусному расстоянию. Если оно увеличится, то оптическая сила уменьшится.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить


Алиса Никитина | 📄 Скачать PDF | Просмотров: 896 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *