Сила Ампера | теория по физике 🧲 магнетизм

Определение

Сила Ампера — сила, которая действует на проводник с током, помещенный в магнитное поле.

Модуль силы Ампера обозначается как FA. Единица измерения — Ньютон (Н).

Математически модуль силы Ампера определяется как произведение модуля вектора магнитной индукции B, силы тока I, длины проводника l и синуса угла α между условным направлением тока и вектором магнитной индукции:

FA=BIlsin.α

Максимальное значение сила Ампера принимает, когда ток в проводнике направлен перпендикулярно вектору магнитной индукции, так как sin.90°=1. И сила Ампера отсутствует совсем, если ток в проводнике направлен относительно вектора магнитной индукции вдоль одной линии. В этом случае угол между ними равен 0, а sin.0°=1.

Пример №1. Максимальная сила, действующая в однородном магнитном поле на проводник с током длиной 10 см, равна 0,02 Н. Сила тока в проводнике равна 8 А. Найдите модуль вектора магнитной индукции этого поля.

10 см = 0,1 м

Так как речь идет о максимальной силе, действующей на проводник с током, тоsin.α при этом равен 1 (проводник с током расположен перпендикулярно вектору магнитной индукции).

Определение направления силы Ампера

Направление вектора силы Ампера определяется правилом левой руки.

Правило левой руки

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции B входила в ладонь, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на отрезок проводника (направление силы Ампера).

Пример №2. В однородном магнитном поле находится рамка, по которой начинает течь ток (см. рисунок). Какое направление (вверх, вниз, влево, вправо, от наблюдателя, наблюдателю) имеет сила, действующая на нижнюю сторону рамки?

Так как в нижней стороне рамки ток направлен вправо, то четыре пальца левой руки нужно направить вправо. Саму левую руку при этом нужно расположить перпендикулярно плоскости рисунка ладонью вверх, чтобы в нее входили линии вектора магнитной индукции. Если отогнуть большой палец на прямой угол, то он покажет направление силы Ампера, действующей на нижнюю часть рамки. В данном случае она направлена в сторону от наблюдателя.

Работа силы Ампера

Проводники, на которые действует сила Ампера, могут перемещаться под действием этой силы. В этом случае говорят, что сила Ампера совершает работу. Из курса механики вспомним, что работа равна:

A=Fscos.α

F — сила, совершающая работу, s — перемещение, совершенное телом под действием этой силы, α — угол между вектором силы и вектором перемещения.

Отсюда работа, совершаемая силой Ампера, равна:

A=FAscos.α=BIlsin.βscos.α

α — угол между вектором силы и вектором перемещения, β — угол между условным направлением тока и вектором магнитной индукции.

Пример №3. Проводник длиной l = 0,15 м перпендикулярен вектору магнитной индукции однородного магнитного поля, модуль которого B = 0,4 Тл. Сила тока в проводнике I = 8 А. Найдите работу, которая была совершена при перемещении проводника на 0,025 м по направлению действия силы Ампера.

Так как проводник расположен перпендикулярно вектору магнитной индукции, и поле однородно, то синус угла между ними равен «1». Так как направление перемещение проводника совпадает с направлением действия силы Ампера, то косинус угла между ними тоже равен «1». Поэтому формула для вычисления работы силы Ампера принимает вид:

A=BIls

Подставим известные данные:

A=0,4·8·0,15·0,025=0,012 (Дж)=12 (мДж)

Текст: Алиса Никитина, 13.8k 👀

Задание ЕГЭ-Ф-ДВ2023-15

По гладким параллельным горизонтальным проводящим рельсам, замкнутым на лампочку накаливания, перемещают лёгкий тонкий проводник. Образовавшийся контур KLMN находится в однородном вертикальном магнитном поле с индукцией B (рис. а). При движении проводника площадь контура изменяется так, как указано на графике (рис. б). Выберите все верные утверждения, соответствующие приведённым данным и описанию опыта.
  1. В течение первых 6 с индукционный ток течёт через лампочку непрерывно.
  2. В интервале времени от 0 до 4 с лампочка горит наиболее ярко.
  3. В момент времени t = 2 с сила Ампера, действующая на проводник, направлена влево.
  4. Максимальная ЭДС наводится в контуре в интервале времени от 4 до 8 с.
  5. Индукционный ток в интервале времени от 6 до 12 с течёт в одном направлении.

Алгоритм решения:

1.Определить истинность 1 утверждения. Для этого нужно установить характер изменения индукционного тока в течение первых 6 с.
2.Определить истинность 2 утверждения. Для этого необходимо установить, от чего зависит яркость лампочки, и насколько яркой была лампочка в течение первых 4 с.
3.Определить истинность 3 утверждения. Для этого нужно определить направление силы Ампера в момент времени t = 2 с и сравнить ее с предложенным направлением.
4.Определить истинность 4 утверждения. Для этого необходимо установить, когда в контуре ЭДС была максимальной. Совпадает ли указанное время с реальным.
5.Определить истинность 5 утверждения. Для этого нужно установить, менял ли направление индукционный ток в период с 6 по 12 с.
6.Записать последовательность номеров верных утверждений.

Решение:

Проверим истинность 1 утверждения, согласно которому в течение первых 6 с индукционный ток течёт через лампочку непрерывно. Запишем закон электромагнитной индукции:

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Магнитный поток определяется формулой:

Φ=BScosα

Следовательно:

Когда изменяется площадь контура, течет индукционный ток. Однако согласно рисунку видно, что в течение первых 4 секунд площадь контура не изменялась. Следовательно, индукционного тока не было. Потому утверждение 1 неверно.

Проверим истинность 2 утверждения, согласно которому в интервале времени от 0 до 4 с лампочка горит наиболее ярко. Выше мы уже установили, что тока в контуре в этот период времени не было. Поэтому лампочка не могла гореть вообще. Следовательно, утверждение 2 неверно.

Проверим истинность 3 утверждения, согласно которому в момент времени t = 2 с сила Ампера, действующая на проводник, была направлена влево. Однако это не так, поскольку в этот момент времени тока в проводнике не было — ведь площадь контура, а соответственно и магнитный поток, который его пронизывает, не менялись. А сила Ампера действует на проводник с током. Следовательно, утверждение 3 неверно.

Проверим истинность 4 утверждения, согласно которому максимальная ЭДС наводится в контуре в интервале времени от 4 до 8 с. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Скорость изменения магнитного потока через поверхность, ограниченную контуром, тем выше, чем круче график изменения площади этого контура. В период времени с 4 до 8 с график наиболее крутой. Следовательно, ЭДС в этот промежуток времени максимальна. Утверждение 4 верно.

Проверим истинность 5 утверждения, согласно которому индукционный ток в интервале времени от 6 до 12 с течёт в одном направлении. Направление индукционного тока зависит от того, как изменяется площадь — увеличивается или уменьшается. Так как в течение указанного промежутка времени площадь только уменьшалась, направление индукционного тока оставалось неименным. Следовательно, утверждение 5 верно.

Записываем последовательность номеров ответов: 45.

Ответ: 45

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17704

Как направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I.

а) вверх

б) вниз

в) к нам

г) от нас


Алгоритм решения

1.Определить направление вектора результирующей магнитной индукции первого и второго проводников в любой точке третьего проводника.
2.Используя правило левой руки, определить направление силы Ампера, действующей на третий проводник со стороны первых двух проводников.

Решение

На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор B, равный геометрической сумме векторов магнитной индукции первого и второго проводников (B1и B2). Применим правило буравчика. Мысленно сопоставим острие буравчика с направлением тока в первом проводнике. Тогда направление вращения его ручки покажем, что силовые линии вокруг проводника 1 направляются относительно плоскости рисунка против хода часовой стрелки. Ток во втором проводнике направлен противоположно току в первом. Следовательно, его силовые линии направлены относительно плоскости рисунка по часовой стрелке.

В точке А вектор B1 направлен в сторону от наблюдателя, а вектор B2— к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор B направлен к наблюдателю.

Теперь применим правило левой руки. Расположим ее так, чтобы четыре пальца были направлены в сторону течения тока в третьем проводнике. Ладонь расположим так, чтобы результирующий вектор B входил в ладонь. Теперь отставим большой палец на 90 градусов. Относительно рисунка он покажет «вверх». Следовательно, сила Ампера FА, действующая на третий проводник, направлена вверх.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18417

Чему равна сила Ампера, действующая на стальной прямой проводник с током длиной 10 см и площадью поперечного сечения 2⋅10–2 мм2 , если напряжение на нём 2,4 В, а модуль вектора магнитной индукции 1 Тл? Вектор магнитной индукции перпендикулярен проводнику. Удельное сопротивление стали 0,12 Ом⋅мм2/м.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать формулу для определения силы Ампера.
3.Выполнить решение в общем виде.
4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Длина проводника: l = 10 см.
 Площадь поперечного сечения проводника: S = 2⋅10–2 мм2.
 Напряжение в проводнике: U = 2,4 В.
 Модуль вектора магнитной индукции: B = 1 Тл.
 Удельное сопротивление стали: r = 0,12 Ом⋅мм2/м.
 Угол между проводником с током и вектором магнитной индукции: α = 90о.

10 см = 0,1 м

Сила Ампера определяется формулой:

FA=BIlsin.α

Так как α = 90о, синус равен 1. Тогда сила Ампера равна:

FA=BIl

Силу тока можно выразить из закона Ома:

I=UR..

Сопротивление проводника вычисляется по формуле:

R=rlS..

Тогда сила тока равна:

I=USrl..

Конечная формула для силы Ампера принимает вид:

FA=BlUSrl..=BUSr..=1·2,4·2·1020,12..=0,4 (Н)

.

.

Ответ: 0,4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17725

На непроводящей горизонтальной поверхности стола лежит жёсткая рамка массой m из однородной тонкой проволоки, согнутая в виде квадрата AСDЕ со стороной a(см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции B которого перпендикулярен сторонам AE и CD и равен по модулю В. По рамке течёт ток в направлении, указанном стрелками (см. рисунок). При какой минимальной силе тока рамка начнет поворачиваться вокруг стороны CD?


Алгоритм решения

1.Сделать список известных данных.
2.Определить, при каком условии рамка с током будет вращаться вокруг стороны CD.
3.Выполнить решение в общем виде.

Решение

По условию задачи известными данными являются:

 Сторона квадратной рамки с током: a.
 Вектор магнитной индукции однородного горизонтального магнитного поля, в котором лежит рамка: B.
 Масса рамки: m.

Пусть по рамке течёт ток I. На стороны АЕ и CD будут действовать силы Ампера:

FA1=FA2=IaB

Для того чтобы рамка начала поворачиваться вокруг оси CD, вращательный момент сил, действующих на рамку и направленных вверх, должен быть не меньше суммарного момента сил, направленных вниз. Момент силы Ампера относительно оси, проходящей через сторону CD:

MA=Ia2B

Момент силы тяжести относительно оси CD:

Mmg=12..mga

Чтобы рамка с током оторвалась от горизонтальной поверхности, нужно чтобы суммарный момент сил был больше нуля:

MA+Mmg>0

Так как момент силы тяжести относительно оси CD отрицательный, это неравенство можно записать в виде:

Ia2B>12..mga

Отсюда выразим силу тока:

I>mga2a2B..

I>mg2aB..

pазбирался: Алиса Никитина | обсудить разбор

ЕГЭ по физике

Вся теория

Механическое движение и его характеристикиРавномерное прямолинейное движениеОтносительность механического движенияНеравномерное движение и средняя скоростьУскорение при равноускоренном прямолинейном движенииСкорость при равноускоренном прямолинейном движенииПеремещение и путь при равноускоренном прямолинейном движенииУравнение координаты при равноускоренном прямолинейном движенииДвижение тела с ускорением свободного паденияДвижение тела, брошенного горизонтальноДвижение тела, брошенного под углом к горизонтуДвижение по окружности с постоянной по модулю скоростьюЗаконы Ньютона. Динамика.Гравитационные силы. Закон всемирного тяготения.Сила упругости и закон ГукаСила тренияВес телаПрименение законов НьютонаДвижение связанных телДинамика движения по окружности с постоянной по модулю скоростьюИмпульс тела, закон сохранения импульсаМеханическая работа и мощностьМеханическая энергия и ее видыЗакон сохранения механической энергииПрименение закона сохранения энергииМомент силы и правило моментовПравило моментов при решении задачДавление твердого телаДавление в жидкостях и газах. Закон Паскаля.Сообщающиеся сосудыАрхимедова силаОсновные положения МКТ и агрегатные состояния веществаОсновное уравнение МКТ идеального газаУравнение состояния идеального газаОбъединенный газовый закон и изопроцессыЗакон ДальтонаИспарение и конденсация, влажность воздухаВнутренняя энергия вещества и способы ее измененияФазовые переходы и уравнение теплового балансаВнутренняя энергия и работа идеального газаПервое начало термодинамикиТепловые машины и второе начало термодинамикиЭлектрический заряд. Закон КулонаЭлектрическое поле и его характеристикиЭлектростатическое поле точечного заряда и заряженной сферыПринцип суперпозиции сил и полейОднородное электростатическое поле и его работаКонденсаторыЭлектрический ток и закон ОмаАмперметр и вольтметр. Правила включения.Последовательное и параллельное соединениеПолная цепьРабота и мощность электрического токаЭлектрический ток в жидкостях, в полупроводниках, в вакууме, в газахМагнитное поле и его характеристикиПринцип суперпозиции магнитных полейСила ЛоренцаЭлектромагнитная индукция и магнитный потокПравило ЛенцаЗакон электромагнитной индукцииСамоиндукцияЭнергия магнитного поля токаМеханические колебанияГармонические колебанияЭлектромагнитные колебанияПеременный электрический токКонденсатор, катушка и резонанс в цепи переменного токаМеханические волныМеханические волны в сплошных средах. Звук.Электромагнитные волныCвет. Скорость света. Элементы теории относительности.Отражение и преломление света. Законы геометрической оптики.Линза. Виды линз. Фокусное расстояние.Построение изображения в линзеФормула тонкой линзыДисперсия светаИнтерференция светаДифракция светаЛинейчатые спектрыФотоэффектФотоныПланетарная модель атомаПостулаты БораРадиоактивностьНуклонная модель атомаЯдерные реакцииЭлементы астрофизики