Задание OM1802o

ОГЭ▿базовый уровень сложности▿другое(архив)
В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основаниям равен 45°. Найдите площадь трапеции.решение 11 задания огэ по математике
📜Теория для решения:
Введите ответ:
Посмотреть решение

Площадь трапеции равна произведению полусуммы оснований, умноженную на высоту. Основания нам известны из условия, необходимо самим найти высоту:

решение 11 задания огэ по математике

После проведения высоты, у нас получается прямоугольный треугольник. Прямоугольный — потому что высота проводится к основанию под углом 90 градусов. Один из углов равен 45°, значит, и второй тоже, так как сумма острых углов в прямоугольном треугольнике равна 90°. Следовательно, треугольник равнобедренный.решение 11 задания огэ по математике

Проведя еще одну высоту, мы получим прямоугольник в центре, та с противоположной стороной, равной основанию 3.

Так как трапеция равнобедренная, то и треугольники равны, значит оставшаяся длина делится пополам:

( 9 — 3 ) / 2 = 3

А так как треугольники равнобедренные, то и высота равна 3.

Отсюда можем найти площадь:

S = ( a + b ) • h / 2 = ( 3 + 9 ) • 3 / 2 = 18

Ответ: 18
Текст: Базанов Даниил, 1.5k 👀
Подписаться
Уведомить о
0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии