EF17974

Алгоритм решения Определить, перед нами ион или нейтральный атом. Установить зарядовое число. Установить массовое число. Выбрать подходящий ответ. Решение Согласно условию задачи, в связанной системе элементарных частиц содержится 14 нейтронов, 13 протонов и 10 электронов. В нейтральном атоме количество электронов равно количеству протонов. В нашем случае электронов на 3 меньше. Значит, перед нами ион. Зарядовое […]

Продолжить чтение!

EF17709

Алгоритм решения Установить, чем определяются количество протонов и нейтронов. Определить, сколько содержится в атоме протонов. Определить, сколько содержится в атоме нейтронов. Решение Протоны и нейтроны — нуклоны. Общее их количество является массовым числом A, которое указывается слева от обозначения химического элемента в верхнем индексе. В данном случае A = 115. Зарядовое число — порядковый номер […]

Продолжить чтение!

EF18114

Алгоритм решения Установить, какие величины меняются при альфа-распаде вещества. Установить характер их изменений. Выяснить, какое вещество может дать данный изотоп полония при двойном альфа-распаде. Решение Когда вещество претерпевает альфа-распад, образуется новое ядро и выделяется альфа-частица — ядро гелия. Эта частица имеет зарядовое число 2. Поэтому новое ядро будет иметь заряд, меньший на 2 единицы. Если […]

Продолжить чтение!

EF17552

Алгоритм решения 1.Записать исходные данные и перевести единицы измерения величин в удобные для задачи измерения. 2.Записать закон радиоактивного распада. 3.Переписать закон радиоактивного распада применительно к условию задачи. 4.Выполнить решение в общем виде. 5.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Активность 1 куб. см введенного раствора: a0 = 2000 распадов/с. • Период полураспада […]

Продолжить чтение!

EF17726

Алгоритм решения 1.Записать исходные данные. 2.Записать закон сохранения импульса. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Энергия излученного фотона: Eф = 16,32∙10–19 Дж. • Кинетическая энергия атома после излучения фотона: Eа = 8,81∙10–27 Дж. Так как до излучения фотона атом покоился, то его импульс был равен нулю. […]

Продолжить чтение!

Ядерные реакции

Ядерная реакция — процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра, а также выделением вторичных частиц или γ-квантов. Осуществление ядерной реакции возможно только при сближении ядер атомов вещества вплотную и их попадании в радиус действия ядерных сил. Но ядра любых химических элементов имеют положительный заряд. Поэтому при […]

Продолжить чтение!

Нуклонная модель атома

Когда Резерфорд опровергнул модель Томсона о строении атома, возник другой вопрос: из чего состоит ядро? Ответ на этот вопрос был получен спустя пару десятков лет. До этого в качестве элементарного ядра принимали протон — положительную частицу, которая имеет заряд, по модулю равный заряду электрона: е = 1,6*10-19 Кл. Масса же частицы равна 1,6726 · 10−27 […]

Продолжить чтение!

Радиоактивность

Радиоактивность — некоторых атомных ядер превращаться в другие ядра, испуская при этом различные частицы и электромагнитное излучение. Как была открыта радиоактивность Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он изучал урановые соли, когда впервые столкнулся с необычным явлением. В феврале 1896 года Беккерель подготовил несколько кристаллов урановой соли и закрепил их на […]

Продолжить чтение!

Постулаты Бора

Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Она оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн (см. рисунок ниже). При этом спектр излучения атома должен быть непрерывным, а не […]

Продолжить чтение!

Планетарная модель атома

Одним из самых важных открытий в области современной физики стало открытие сложного строения атома. В процессе изучения этого строения были открыты новые законы, которые применимы только для описания движения микрочастиц. Такие законы называют законами квантовой механики. Строение атома по Томсону Правильное представление о строении атома сложилось не сразу. Первую модель строения частицы вещества предложил английский […]

Продолжить чтение!

Фотоны

Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо). Энергия и импульс фотона Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, […]

Продолжить чтение!

Фотоэффект

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как […]

Продолжить чтение!