Задание OM1420221

ОГЭ▿базовый уровень сложности▿ФИПИ()
В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?
📜Теория для решения: Арифметическая прогрессия и сумма ее членов
Введите ответ:
Посмотреть решение

Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.

Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12.

Для нахождения суммы имеем формулу Sn=a1+an2..×n, то есть для нашей задачи S12=a1+a122..×12. У нас нет а12, найдем его по формуле n-ого члена арифметической прогрессии: a12=a1+d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:

S12=18+402..×12=348

Следовательно, 348 мест всего в амфитеатре.

Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.

Ответ: 348
Даниил Романович | Просмотров: 34 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован.