Определение
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.
Другими словами, последовательность (аn ) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1 =аn +d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1 –аn . Число d называют разностью арифметической прогрессии.
Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18….., так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.
Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:
a2 = a1 + d;
a3 = a2 + d = a1 +2d;
a4 = a3 + d = a1 +3d.
Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:
Формула n-ого члена арифметической прогрессии
an = a1 + d(n−1)
где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии
Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.
Пример №1. Найти а20 арифметической прогрессии (аn ), если а1 =14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20 = a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.
Найти а7 арифметической прогрессии (аn ), если а1 =−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7 = a1 + d(7−1)= −8−3(7−1)= −26.
Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12 : а12 = a1 + d(12−1)=10+2(12−1)=32.
Утверждение
Любая арифметическая прогрессия может быть задана формулой вида an =kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an =kn+b, где k и b некоторые числа, то она является арифметической.
Так, например, формула an =5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20 =5× 20+1=101.
Свойство арифметической прогрессии
Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:
аn =(аn-1 + аn+1 ):2
Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.
Пример №2. Найти а
10 арифметической прогрессии (а
n ), если а
9 =24; а
11 =38. Здесь используем свойство, так как видим, что у а
10 известны соседние члены. Значит, а
10 =(а
9 +а
11 ):2=(24+38):2=31. Таким образом, десятый член равен 31.
Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.
Формулы суммы n первых членов арифметической прогрессии
Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро.
Формула суммы членов арифметической прогрессии с известными членами
S n =
(a 1 + a n
)n 2 .
В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.
Формула суммы членов арифметической прогрессии с первым членом и разностью
S n = 2 a 1 + d ( n − 1 ) 2 . . n
Рассмотрим на примерах применение данных формул.
Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn ), если а1 =11, а50 =39.
Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1 =11, а50 =39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:
S 50 = ( a 1 + a 50
)50 2 . . = ( 11 + 39 ) 50 2 . . = 2500 2 . . = 1250
Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.
Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:
d=18-3=15; а10 =3+15(10-1)=138
S 10 = ( a 1 + a 10
)10 2 . . = ( 3 + 138 ) 10 2 . . = 705
Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:
S 10 = 2 a 1 + d ( 10 − 1 ) 2 . . 10 = 2 × 3 + 15 ( 10 − 1 ) 2 . . 10 = 705
Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.
Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.
Задание OM1420223
Миша решил заказать себе такси. Подача машины и первые пять минут поездки в совокупности стоят 159 рублей, а стоимость каждой последующей минуты поездки фиксирована. Стоимость поездки с 6 по 15 минуту (включительно) составила 80 рублей, а с 6 по 25 минуту – 160 рублей. Найти итоговую стоимость поездки, если она длилась 1 час. Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует
Известно
Решение
Подача и первые 5 минут – 159 руб
–
Стоимость с 6 по 15 минуту – 80 рублей
Стоимость с 6 по 25 минуту – 160 рублей.
Разница во времени 10 минут стоит 80 руб
Значит, 1 минута стоит 8 руб (80:10=8)
1 час – ? руб
1 час=60 мин; убираем 5 минут, которые включены в подачу машины, значит, надо найти стоимость 55 минут: 55• 8=440 руб
Прибавляем стоимость подачи: 440+159=599 рублей
Ответ: 599
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1420221
В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре? Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.
Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1 =18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12 .
Для нахождения суммы имеем формулу Sn =a 1 + a n 2 . . × n , то есть для нашей задачи S12 =a 1 + a 12 2 . . × 12 . У нас нет а12 , найдем его по формуле n-ого члена арифметической прогрессии: a12 =a1 +d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:
S12=18 + 40 2 . . × 12 = 348
Следовательно, 348 мест всего в амфитеатре.
Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.
Ответ: 348
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание 14OM21R
При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С. Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:
-6-8=-14 через 1 минуту
-14-8=-22 через 2 минуты
-22-8=-30 через 3 минуты
-30-8=-38 через 4 минуты
-38-8=-46 через 5 минут
-46-8=-54 через 6 минут
Значит, наш ответ -540 С
Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an =a1 +d(n – 1). В данном случае a1= -6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7 =-61 -8(7 – 1). Вычислим: a6 =-6-8∙ 5=-6-48=-54.
Ответ: -54
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1407
К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года? Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину .
Рассмотрим данные:
2008 г – 38100 человек
2012 г – ? человек
2016 г. – 43620 человек
Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=a n − a k k − n . . , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.
Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:
(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.
Теперь можно найти, сколько человек проживало в конце 2012 года.
38100+690(2016 – 2012)= 40860 человек
Ответ: 40860
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1406
Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень? Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается . То есть знаменатель геометрической прогрессии q равен 2, b1 =2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn =b 1 ( q n − 1 ) q − 1 . . , где Sn >30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.
Подставляем наши данные в формулу: 2 ( 2 n − 1 ) 2 − 1 . . > 30000
Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n -1)>30000; делим обе части на 2: 2n -1>15000; переносим 1 в правую часть и получим: 2n >15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210 =1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214 =16384, где 16384<15001. Следовательно, наш ответ 14 минут.
Ответ: 14
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1405
В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля? В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7 =777; в 12-й день – 852 рубля, это а12 =852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25 .
1 способ:
В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn =ak +d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а12 =а7 +d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.
Теперь, зная число d, мы можем найти а25 через, например, а12 , используя всё ту же формулу. Получаем: а25 =а12 +d(25-12); а25 =852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.
2 способ:
Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=a n − a k k − n . . , где k>n. Составим формулу для наших а12 и а7 , а затем подставим в нее данные: d=a 12 − a 7 12 − 7 . . ; d=852 − 777 12 − 7 . . =15. Теперь по этой же формуле найдем а25 , связывая его с а12 : d=a 25 − a 12 25 − 12 . . ; 15=a 25 − 852 13 . . ; найдем отсюда а25 , а25 =15∙13+852=1047.
Ответ: 1047
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1404
Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней. В условии задачи встречаются слова, что норма увеличивалась на одно и то же число . И это значит, что мы имеем арифметическую прогрессию, в которой а1 =6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11 =176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11 .
Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn = а 1 + а n 2 . . ∙n , куда мы и подставим все данные: 176= 6 + а 11 2 . . ∙11 .
Разделим обе части на 11, получим 16= 6 + а 11 2 . . ; умножим 16 на 2 (правило пропорции): 32=6+а11 . Отсюда найдем а11 =32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.
Ответ: 26
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1403
Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут? Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1 =15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.
Теперь берем формулу n члена арифметической прогрессии аn =a1 +d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.
Ответ: 5
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1402
Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам. Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше , чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1 +аn =7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn =60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.
Зная формулу суммы n первых членов арифметической прогрессии
Sn = а 1 + а n 2 . . ∙n , имеем 60=7 , 5 ∙ n 2 . . . Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.
Ответ: 16
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM1401
При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции. При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число , на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.
Итак, имеем а1 =0,2; d=0,2. Ищем а7 . По определению n-ого члена арифметической прогрессии имеем формулу аn =a1 +d(n – 1). Подставим в нее наши данные: а7 =a1 +d(7 – 1)=0,2+0,2·6=1,4
Ответ: 1,4
pазбирался: Даниил Романович | обсудить разбор | оценить