Обратные числа | теория по математике 🎲 числа и вычисления

Определение

Обратными (или взаимно-обратными) называют пару чисел, которые при перемножении дают 1. В самом общем виде обратными являются числа:

Как найти обратное число?

Для нахождения обратного числа, нужно единицу поделить на это число. В случае обыкновенной дроби просто поменять числитель и знаменатель местами.

Обратное число обыкновенной дроби

Когда ищем обратное число для обыкновенной дроби, то делить ее на 1 не очень удобно, так как запись получается громоздкой. В этом случае гораздо проще поступать иначе: дробь просто переворачиваем, меняя местами числитель и знаменатель. Если дана правильная дробь, то после переворачивания получается дробь неправильная, то есть такая, из которой можно выделить целую часть. Делать это или нет, решать нужно в каждом конкретном случае особо. Так, если с полученной перевернутой дробью далее придется совершать какие-то действия (к примеру, умножение или деление), то выделять целую часть не стоит. Если же полученная дробь – это конечный результат, то, возможно, выделение целой части и желательно.

Обратное число десятичной дроби

Если требуется найти обратное число к десятичной дроби, то следует воспользоваться первым правилом (деление 1 на число). В этой ситуации можно действовать одним из двух способов. Первый – просто разделить 1 на это число в столбик. Второй – сформировать дробь из 1 в числителе и десятичной дроби в знаменателе, а затем домножить числитель и знаменатель на 10, 100 или другое число, состоящее из 1 и такого количества нулей, которое необходимо, чтобы избавиться от десятичной запятой в знаменателе. В результате будет получена обыкновенная дробь, которая и является результатом. При необходимости ее может понадобиться сократить, выделить из нее целую часть или перевести в десятичный вид.

Как найти обратное число?

Принцип проверки основан на определении обратных чисел. То есть для того, чтобы убедиться, что числа являются обратными друг другу, нужно перемножить их. Если в результате будет получена единица, значит, числа – взаимно обратные.

Свойства обратных чисел

Свойство №1

Обратное число существует для любого числа, кроме 0.

Ограничение связано с тем, что нельзя делить на 0, а при определении обратного числа для нуля его как раз придется переместить в знаменатель, то есть фактически делить на него.

Свойство №2

Сумма пары взаимно-обратных чисел всегда не меньше, чем 2. Математически это свойство можно выразить неравенством:

Свойство №3

Умножение числа на два взаимно-обратных числа равносильно умножению на единицу. Математически:

Свойство №4

Взаимно-обратными могут быть числовые выражения.

Свойство №5

Для числа, представленного в виде степени с показателем х, обратным будет число в виде степени с показателем –х. Обоснование:

 

Это свойство означает, что и для всякой степени тоже может быть подобрано обратное число.

Даниил Романович | Просмотров: 3.1k

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *