👀 313 |

Числовые неравенства и их свойства

теория по математике 📈 неравенства

Определение

Числовое неравенство – это неравенство, в котором по обе стороны от знака неравенства содержатся числа или числовые выражения. Результат сравнения записывают с помощью знаков =, <, >.

Например, 24=24; 46>13, 67<21, –15>–65.

В зависимости от конкретных чисел используется способ сравнения, но существует способ, который охватывает все числа, он основывается на следующем определении.

Способ сравнения чисел

Число а больше числа b, если разность (а – b) является положительным числом; число а меньше числа b, если разность (а – b) является отрицательным числом; число а равно числу b, если разность (а – b ) является равным нулю числом.

Пример №1.
  1. 123>118, так как 123–118=5, a 5>0;
  2. –15>–65, так как –15–(–65)= –15+65=50, a 50>0
  3. 118<123, так как 118–123=–5, a –5<0;
  4. –90<–50, так как –90–(–50)=–90+50=–40, а –40<0
  5. 451=451, так как 451–451=0
Основные свойства числового неравенства
  1. Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.
  2. Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.
  3. Если a и b положительные числа, причем a<b, то:
Пример №2.
  1. Дано неравенство 45>21. Если обе части умножим на одно и то же положительное число, например, 10, то получится верное неравенство 450>210.
  2. Дано неравенство 95>35. Обе части разделим на одно и то же отрицательное число (–5), при этом знак неравенства изменим на противоположный: 95:(–5)<35:(–5), получим верное неравенство –19<–7.
  3. Даны числа 17 и 52, где 17<52. Если разделить число 1 на каждое из них, то получим: Это неравенство получим в соответствии со следствием из свойства №3.

Алла Василевская | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *