👀 499 |

Квадратные неравенства с одной переменной

теория по математике 📈 неравенства

Определение

Неравенство вида ax2+bx+c>0 или ax2+bx+c<0, где х – переменная, a, b и c некоторые числа называют неравенством второй степени с одной переменной (или квадратными неравенствами). Также в неравенствах могут встречаться знаки ≤ или ≥.

Для решения неравенства находят промежутки, в которых функция у=ax2+bx+c принимает положительные или отрицательные значения, это зависит от знака неравенства, данного в стандартном виде. Для этого достаточно определить, в каком направлении расположены ветви параболы у=ax2+bx+c, а также найти нули данной функции, относительно которых и определяются промежутки.

Вспомним, что ветви параболы направлены вверх при а>0, ветви направлены вниз при а<0. Для нахождения нулей функции необходимо решить обычное квадратное уравнение, то есть найти дискриминант и корни квадратного трехчлена ax2+bx+c.

Алгоритм решения неравенства второй степени с одной переменной

Порядок действий
  1. Находим дискриминант квадратного трехчлена ax2+bx+c и выясняем, имеет ли уравнение корни.
    • Если квадратный трехчлен имеет два корня (D>0), то на оси х отмечаем две точки (выколотые или приколотые, в зависимости от знака исходного неравенства) и проводим через них параболу ветвями вверх/вниз (зависит от условия).
    • Если квадратный трехчлен имеет два одинаковых корня (D=0), то отмечаем одну точку на оси х – вершину параболы, проводим из этой точки её ветви.
    • Если квадратный трехчлен не имеет корней (D<0), то изображаем параболу схематически в одной из полуплоскостей, это зависит от направления ветвей (а>0 – расположена в верхней полуплоскости ветвями вверх; а<0 – расположена в нижней полуплоскости ветвями вниз).
  2. находим на оси х промежутки, для которых точки параболы расположены выше оси х (если условие дано для чисел больших нуля) или ниже оси х (если условие дано для чисел меньших нуля).

Первый случай. D>0, a>0.

Решить неравенство:

х2+2х–48<0

Неравенство дано в стандартном виде. Находим дискриминант квадратного трехчлена х2+2х–48:

D=b2–4ac=22-=4+192=196>0

Значит, квадратный трехчлен имеет два корня, находим их по формуле:

Это будут числа –8 и 6. Нам надо на оси х отметить две выколотые точки и построить параболу ветвями вверх, так как число а=1, то есть а>0. Теперь для ответа определяем промежуток отрицательных чисел, так как в условии неравенства стоит знак «меньше».

Это будут все числа, расположенные ниже оси х (на рисунке промежуток заштрихован), в ответ запишем промежуток чисел (–8;6).


Второй случай. D>0, a<0.

Решить неравенство:

–х2+2х+15<0

Находим дискриминант, он равен 64, значит, квадратный трехчлен имеет два корня. Находим по известной формуле эти корни, получим –3 и 5. Отмечаем на оси х эти две выколотые точки и проводим параболу ветвями вниз, так как a<0 по условию. Теперь для ответа определяем промежуток отрицательных чисел, так как в условии неравенства стоит знак «меньше».

Это будут все числа, расположенные ниже оси х (промежутки показаны штриховкой), в ответ запишем промежутки чисел (-∞;-3)∪(5:+∞).


Третий случай. D=0, a<0.

Решить неравенство:

2–12х+9>0

Находим дискриминант, он равен нулю. Значит, имеем корень, который равен 1,5. Отмечаем на оси х выколотую точку, это будет вершина параболы, проводим параболу ветвями вверх, так как а=4. Теперь определяем промежуток положительных чисел, это все числа, которые находятся выше оси х (показаны штриховкой).

То есть, это числа от минус бесконечности до 1,5 и от 1,5 до плюс бесконечности, так как точка 1,5 выколотая, а значит, она не входит в данный промежуток чисел. Запишем ответ: (-∞;-1,5)∪(1,5:+∞). Также данный ответ можно записать короче: х≠1,5.


Четвертый случай. D<0, a>0.

Решить неравенство:

2+6х+9<0

Находим дискриминант, он равен –144, значит, квадратный трехчлен не имеет корней. В координатной плоскости покажем параболу, которая не пересекает ось х, то есть расположена в верхней полуплоскости ветвями вверх, так как а=5. Теперь для нахождения ответа определяем промежуток отрицательных чисел: так как парабола находится в верхней полуплоскости, а нужен промежуток отрицательных чисел (показан штриховкой), то данное неравенство не имеет решений.

Записываем ответ: нет решений.


Пятый случай. D<0, a<0.

Решить неравенство:

–10х2+3х–2≤0

Находим дискриминант, он равен отрицательному числу (–71), значит, корней нет. В координатной плоскости покажем параболу, которая не пересекает ось х, то есть, расположена в нижней полуплоскости ветвями вниз, так как а=–10. Теперь для нахождения ответа определяем промежуток отрицательных чисел: так как парабола находится в нижней полуплоскости, а нам нужен промежуток отрицательных чисел (показан штриховкой), то данное неравенство имеет множество решений (искомый промежуток совпал с расположением параболы в нижней полуплоскости).

C:\Users\O2\Desktop\4.png

Записываем ответ: множество решений. Также ответ можно записать в виде промежутка (-∞;+∞) или записать так: х – любое число.


Даниил Романович | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *