Задание OM2005

ОГЭ▿высокий уровень сложности▿другое()
Решить неравенство(х5)2<7(х5)
📜Теория для решения: Квадратные неравенства с одной переменной
Посмотреть решение

Для того чтобы начать решать неравенство, мы должны понимать, интервал каких чисел будем находить – положительных или отрицательных. Для этого перенесем выражение из правой части в левую, изменяя знак на противоположный, и справа от знака «меньше» образуется нуль:

(х5)27(х5)<0 Теперь вынесем за скобки общий множитель (х-5), получим: (х5)(х57)<0 Найдем нули функции, приравнивая каждый множитель к нулю: х5=0, откуда х=5 х57=0,   откуда:  х=5+7 Отметим эти числа на числовом луче и найдем интервал отрицательных чисел: Итак, видно, что необходимый интервал от 5 до (5+7) Ответ: (5;5+7)Ответ: см. решение
Даниил Романович | Просмотров: 804 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован.