Задание OM2102o

ОГЭ▿высокий уровень сложности▿другое(архив)
Решите уравнение и запишите в ответ наибольший из корней:http://self-edu.ru/htm/2018/oge2018_36/files/1_21.files/image001.gif
📜Теория для решения:

Решение

Алгоритм решения:
  1. Определить тип уравнения.
  2. Найти делители свободного члена уравнения.
  3. Определить среди делителей один из корней.
  4. Выполнить деление кубического многочлена на выражение х-а, где а – найденный корень.
  5. Записать получившийся в результате деления квадратный трехчлен и составим уравнение.
  6. Решить уравнение.
  7. Записать ответ.
Решение:

1. Перед нами уравнение третьей степени общего типа.

2. Найдем делители свободного члена данного уравнения. Это числа: 1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12;.18; -18; 36; -36.

3. Рассмотрим числа 1; -1; 2; -2; 3; -3. Это наименьшие среди найденных делителей. Подставим их по очереди в уравнение вместо х:

  • для x=1: http://self-edu.ru/htm/2018/oge2018_36/files/1_21.files/image002.gif  — не подходит;
  • для x=-1: http://self-edu.ru/htm/2018/oge2018_36/files/1_21.files/image003.gif  — не подходит;
  • для х=2: 23+4∙22-9∙2=8=16-18-36=-38≠0 — не подходит;
  • для х=-2: (-2)3+4∙(-2)2-9∙(-2)-36=-8+16+18-36=-10≠0 – не подходит;
  • для x=3: http://self-edu.ru/htm/2018/oge2018_36/files/1_21.files/image004.gif  — подходит.

Мы нашли один корень.

4. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

14-9-36
317120

Искать квадратный трехчлен можно другим способом, выполнив деление многочлена столбиком:

5. После деления получаем квадратный трехчлен:

x2 +7x+12.

Составим квадратное уравнение для вычисления оставшихся двух корней:

x2 +7x+12=0

6. Решим его с помощью формул корней и дискриминанта

http://self-edu.ru/htm/2018/oge2018_36/files/1_21.files/image005.gif

7. Получили три корня 3; -3; -4.

Ответ: 3

Даниил Романович | 📄 Скачать PDF | Просмотров: 24 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *