Задание OM2104o
ОГЭ▿высокий уровень сложности▿другое(архив)
Решите уравнение и запишите в ответ натуральное число, встречающееся в обоих корнях:
📜Теория для решения:
(х–2)4+3(х–2)2–10=0
📜Теория для решения:
Посмотреть решение
Алгоритм решения:
- Выполняем замену выражения с х на альтернативную переменную. Это позволит упростить уравнение и привести его к форме обычного квадратного.
- Решаем полученное квадратное уравнения.
- Переходим обратно к выражению с х, для которого была выполнена замена.
- Находим искомые корни уравнения.
Решение:
(х–2)4+3(х–2)2–10=0
Выполняем замену: (х–2)2=а.
Получаем:
а2+3а–10=0
Это уравнение можно решить с помощью т.Виета. Согласно теореме, имеем:
а1+а2=–b, a1·a2=c.
Здесь а1, а2 – корни этого уравнения, b=3, c=–10.
Отсюда получаем: а1=2, а2=–5.
Возвращаемся к переменной х. Поскольку (х–2)2=а, то получим:
1) (х–2)2=2
2) (х–2)2=–5
это уравнение корней не имеет, т.к. нельзя извлечь корень из отрицательного числа
Корни уравнения:
Ответ: 2
Текст: Базанов Даниил, 657 👀
Подписаться
авторизуйтесь
Пожалуйста, войдите, чтобы прокомментировать
0 комментариев
Старые