Линейное уравнение | теория по математике 🎲 уравнения

Определение

Уравнение – это равенство, содержащее переменную, значение которой надо найти.

Уравнение с одним неизвестным, содержащим первую степень, называется линейным уравнением с одной переменной. Стандартный вид линейного уравнения ax+b=0, где a и b некоторые числа, а х – переменная. Также стандартным видом уравнения можно считать и вид ax=b.

Так, например, к линейным относятся уравнения:

6х+21=0; 34–2х=0; 34х=17; 89х=0

Уравнения, содержащие несколько слагаемых с переменной или без нее, а также скобки, называются уравнениями, сводящимися к линейным. То есть при его упрощении должно получиться линейное уравнение стандартного вида. К таким уравнениям могут относиться уравнения вида:

х+12=4х–45; 19х–67=98; х=–32+17х; 7(х+13)=89–14х

Решить уравнение – это значит найти все его корни или доказать, что корней нет.

Что такое корень уравнения?

Вспомним, что корнем уравнения называется значение переменной, при котором уравнение обращается в верное равенство.

Корни линейного уравнения

Наличие корней зависит от коэффициентов а и b.

  1. Если а=0, то уравнение не имеет корней;
  2. Если а=0 и b=0, то корней бесконечное множество (корнем является любое число);
  3. Если а≠0 – уравнение имеет единственный корень b:а.

Рассмотрим нахождение количества корней на примерах.

Пример №1.

–2х+10=0

Здесь коэффициент а отличен от нуля. Значит, уравнение имеет один корень.

0х–19=0

Здесь коэффициент а равен нулю, поэтому корней нет.

0х=0

Здесь оба коэффициента равны нулю, поэтому уравнение имеет множество корней, или, еще можно сказать, что корнем уравнения является любое число.

Чтобы найти корни уравнения, надо его решить, используя алгоритм, по которому из одного уравнения мы сможем получить уравнение, равносильное данному. Сначала вспомним, что при переносе слагаемых из одной части в другую, мы получаем уравнение, равносильное данному. Также можно делить или умножать обе части уравнения на одно и то же число.

Алгоритм решения линейного уравнения
  1. Раскрыть скобки (при их наличии), используя правило раскрытия скобок;
  2. Выполнить перенос слагаемых их одной части в другую (слагаемые с переменной собираем в одной части, слагаемые без переменной – в другой);
  3. Привести подобные слагаемые;
  4. Найти корень уравнения.

Пример №2. Решить уравнение:

2х–11=9х+10

В данном уравнении нет скобок, поэтому выполняем перенос слагаемых, изменяя соответственно знаки у тех слагаемых, которые переносим (обычно слагаемые с переменной собираем слева, а без переменной – справа): 2х–9х=10+11. Теперь приводим подобные слагаемые и получаем: –7х=21. Видим, что корень находится действием деления (неизвестный множитель): х=21:(–7). Ответ х=–3.

При оформлении решения запись оформляем следующим образом:

2х–11=9х+10

2х–9х=10+11

–7х=21

х=21:(–7)

х=–3

Пример №3. Решить уравнение:

5х–2(х–8)=9х–(3х+11)

Здесь мы видим скобки, поэтому сначала раскроем их, помня о том, то число 2 в левой части уравнения надо умножить на каждое слагаемое в скобках, а в правой части уравнения перед скобкой стоит «минус», поэтому изменяем знаки у слагаемых при раскрытии скобок: 5х–2х+16=9х–3х–11. Выполняем перенос слагаемых: 5х–2х–9х+3х=–11–16. Приводим подобные: –3х=–27. Находим корень уравнения: х=–27:(–3). Получаем ответ: х=9

Пример №4. Решить уравнение:

2х–12=2х+3

Выполним всё по алгоритму: перенос слагаемых и приведение подобных слагаемых. 2х–2х=3+12; 0х=15. Видим, что коэффициент а=0, поэтому запишем ответ – нет корней, так как надо 15:0, а мы знаем правило, что на нуль делить нельзя.

Текст: Алла Василевская, 9k 👀

Задание 9OM21R

Найти корень уравнения 2 + 3х= – 7х – 5

Имеем линейное уравнение:

2 + 3х= – 7х – 5

Следовательно, начинаем решение с переноса слагаемых (с переменной влево, без переменной – вправо): 3х + 7х= – 5 – 2, не забывая изменять знак у слагаемых, которые переносим. Теперь приводим подобные в каждой части, получаем 10х= –7.

Находим неизвестный множитель делением произведения –7 на известный множитель 10, получаем –0,7.

Запись решения выглядит так:

2 + 3х= – 7х – 5

3х + 7х= – 5 – 2

10х= –7

х=–7:10

х=–0,7

Ответ: –0,7

pазбирался: Базанов Даниил | обсудить разбор

Вся теория

Натуральные числаОтношение чиселОбратные числаОбыкновенные дробиДесятичные дробиПеревод обыкновенной дроби в десятичную и наоборотБесконечные дроби и иррациональные числаОкругление чиселДействия с рациональными числамиДействия со степенямиЧисловые и буквенные выражения. Порядок действий.Одночлен и его стандартный видМногочлены. Действия с многочленами.Формулы сокращенного умножения. Разложение на множители.Алгебраические дробиНеполные квадратные уравненияКвадратное уравнение. Дискриминант. Теорема Виета.Биквадратные уравненияЧисловые неравенства и их свойстваЛинейные неравенства с одной переменнойКвадратные неравенства с одной переменнойМетод интерваловЧисловая последовательностьАрифметическая прогрессия и сумма ее членовГеометрическая прогрессия и сумма ее членовФункция. Зависимые и независимые переменные. Область определения и область значений функции.Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.Линейная функция, ее свойства и графикПарабола, график, вершина, нули.Гипербола. График функции и свойства.Угол. Биссектриса. Виды углов.Прямая. Параллельные и перпендикулярные прямые.Плоскость. Прямая. Луч. Отрезок. Серединный перпендикуляр.Треугольник. Медиана, биссектриса, высота, средняя линия.Равнобедренный и равносторонний треугольникиПрямоугольный треугольник. Теорема Пифагора.Признаки равенства треугольниковНеравенство треугольникаОкружность и кругВписанные и центральные углы, их свойстваОписанная и вписанная окружностьЧетырехугольникиУмножение и его свойстваШкала. Координатный луч.Многоугольники. Равные фигуры.Прямоугольный параллелепипед и его объем. Пирамида.ВПР по Математике 8 классВПР по математике 7 классВПР по математике 6 классВПР по математике 5 класс