Отрезок. Серединный перпендикуляр.

теория по математике 📈 планиметрия

Перпендикуляр и наклонная

Определение

Отрезок – это часть прямой, ограниченная двумя точками. Точки, которые его ограничивают, называю концами отрезка. Обозначают концы отрезка заглавными латинскими буквами.

На рисунке изображен отрезок АВ, также можно сказать, что изображен отрезок ВА.

К любому отрезку можно провести перпендикулярную прямую. Вспомним, что перпендикулярной прямой называется прямая, проведенная под углом 90 градусов.
Определение

Серединным перпендикуляром является прямая, которая проходит через середину данного отрезка и перпендикулярна ему.

Серединный перпендикуляр к отрезку AB.

На данном рисунке мы видим, что отрезок разделен на две равные части (показаны штрихами), а через середину проведена прямая а под углом 900 к данному отрезку АВ. Следовательно, прямая а – серединный перпендикуляр к отрезку АВ.

Свойство серединного перпендикуляра

Все точки серединного перпендикуляра равноудалены от концов данного отрезка.

На данном рисунке через середину О отрезка АВ проходит прямая m, которая является серединным перпендикуляром. На этой прямой взята некоторая точка М. По свойству серединного перпендикуляра к отрезку, расстояния от точки М до концов отрезка АВ будут равны, то есть АМ=МВ.

Если прямая, проведённая через данную точку, пересекает прямую (отрезок), но не перпендикулярна к ней, то ее называют наклонной. Наклонная всегда больше перпендикуляра.

На данном рисунке АВ – перпендикуляр, а АС – наклонная к прямой а. Видим, что действительно АС>ВС. Точку В называют основанием перпендикуляра, а точку С – основанием наклонной.


Даниил Романович | 📄 Скачать PDF | Просмотров: 558 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *