Гипербола. График функции и свойства.

теория по математике 📈 функции

Определение

Графиком функции у=kx.., где k0 число, а х – переменная, является кривая, которую называют гиперболой.

Графиком функции у=kx.., где k0 число, а х – переменная, является кривая, которую называют гиперболой. Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.

C:\Users\Учитель\Desktop\1.jpg

Свойства гиперболы (у=kx.)

График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.

  1. Область определения – любое число, кроме нуля.
  2. Область значения – любое число, кроме нуля.
  3. Функция не имеет наибольших или наименьших значений.

Построение графика функции

Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.


Построить график функции у=10x...

Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось

х124510
у
х–1–2–4–5–10
у
Теперь делим на эти числа 10, получим значения у:
х124510
у1052,521
х–1–2–4–5–10
у–10–5–2,5–2–1

Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.

Теперь для построения гиперболы соединим точки плавной линией.
Построить график функции у=5x...

Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.

х12510
у–5–2,5–1–0,5
х–1–2–5–10
у52,510,5

Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.


Даниил Романович | 📄 Скачать PDF | Просмотров: 172 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *