👀 534 |

Действия со степенями

теория по математике 📈 числа и вычисления

Что такое степень?

Степенью числа a с натуральным показателем n называют произведение n одинаковых множителей, каждый из которых равен а. То есть аn=a×a×a×a …..a (а берется n раз). Число а называют основанием, а число n показателем степени. Показатель показывает, сколько раз берется основание как множитель.

Пример №1.
  • 34=3×3×3×3 число 3 берем 4 раза (показатель 4)
  • 213=21×21×21 число 21 берем 3 раза (показатель 3)

Свойства степени (применимы для степеней с одинаковым основанием)

Умножение степеней

При умножении степеней с одинаковым основанием основание оставляют тем же, а показатели складывают:

an× am=an+m

Пример №2.

а2×а82+810

55×53×54=55+3+4=512

Деление степеней

При делении степеней с одинаковым основанием  основание оставляют тем же, а показатели вычитают:

an : am=anm

Пример №3.

с12512-5= с7

323:320=323-20= 33

Возведение степени в степень

При возведении степени в степень основание оставляют тем же, а показатели умножают:

(an)m=an×m

Пример №4.

10)220

(63)5=615

Степень произведения

При возведении в степень произведения разных множителей необходимо возвести в эту степень каждый множитель:

(a×b×c)m=am×bm×cm

Пример №5.

(сmn)5=c5m5n5

(3254)6=312524

Степень дроби  (степень частного)

При возведении в степень обыкновенной дроби необходимо возвести в данную степень числитель и знаменатель дроби:

Важные правила для работы со степенями

Запомните!
  1. Любое число в нулевой степени равно 1 (а0=1).
  2. Нуль в любой степени равен нулю (0n=0).
  3. Свойства степени с натуральным показателем применимы для степени с целым отрицательным показателем.
Пример №6.

с-21 × с-2-21+(-2)-23

х12 : х-2= х12-(-2)14

-3)5-15

Правила для степени с целым отрицательным показателем
  1. Степень с целым отрицательным показателем можно представить в виде обыкновенной дроби, числитель которой равен единице, а знаменатель степени с натуральным показателем.
  2. Если дана дробь, в знаменателе которой есть степень с целым отрицательным показателем, то ее можно представить в виде степени с натуральным показателем.
  3. Если дана дробь, в числителе и знаменателе которой есть степень с целым отрицательным показателем, то можно заменить её дробью, содержащей степень с натуральным показателем, просто поменяв числитель и знаменатель местами.

Алла Василевская | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *