👀 674 |

Действия с рациональными числами

теория по математике 📈 числа и вычисления

Что такое рациональные числа?

Рациональные числа – это числа, которые можно представить в виде обыкновенной дроби, где a – целое число, а b – натуральное.

То есть все дробные и целые числа вместе образуют рациональные числа, так как любое целое можно представить в виде обыкновенной дроби, записав его в числитель, а в знаменателе надо написать 1.

Пример №1. Любые целые числа, например, 38, -24, 49 можно представить в виде обыкновенных дробей, их называют рациональными:

Действия с рациональными числами

Сложение (или вычитание) рационального числа и ноля

Для любого рационального числа применимо правило сложения (или вычитания): а + 0 = 0, a — 0 = a

Пример №2. –25,7 + 0 = –25,7 или 0+(–67)= –67

Аналогичное правило работает и для вычитания нуля.

Пример №3. 45 – 0=45 или – 67 – 0 = – 67

Как складывать отрицательные числа?

Чтобы сложить два отрицательных рациональных числа, складывают модули и перед полученным результатом ставят знак минус.

Модуль неотрицательного числа равен этому числу, модуль отрицательного числа равен числу, противоположному данному.

Пример №4. Складываем модули чисел –31 и –45, то есть модули чисел равны соответственно |–31|=31 и |–45|=45, значит, 31+45 = 76. Далее ставим минус в ответе. Запись самого решения выполняется без знака «модуля» следующим образом:

 – 31+(–45)= –(31+45)= –76

Как складывать числа с разными знаками?

При сложении чисел с разными знаками необходимо из числа, которое больше по модулю, вычесть число, которое меньше по модулю, а перед полученным результатом поставить знак того слагаемого, модуль которого больше.

Пример 5.

  • 45+(–98) = – (98–45)= –53 здесь большее по модулю число – это 98, поэтому из него будем вычитать число 45 и ставить в ответе знак «минус».
  • –43+81=81–43=38 здесь большее по модулю число это 81, поэтому из него вычитаем 43, соответственно результат будет положительный.
Правило вычитания рациональных чисел

Чтобы вычесть из одно числа другое, необходимо к уменьшаемому прибавить число, противоположное вычитаемому.

Пример №6.

  • 10–18=10+(–18)= –8 здесь к уменьшаемому 10 прибавляем число противоположное 18, то есть прибавляем –18. Дальше работаем по известному правилу сложения чисел с разными знаками.
  • –7–(–2)= –7+2= –5 здесь к уменьшаемому –7 прибавляем число противоположное –2, то есть 2. Далее опять работает правило сложения чисел с разными знаками.
  • 15–(–12)=15+12=27 здесь к уменьшаемому 15 прибавляем число противоположное –12, то есть 12. Далее – получаем сложение положительных чисел.
Как умножать рациональные числа с разными знаками?

Правило умножения двух рациональных чисел, содержащих разные знаки, гласит: выполняем умножение модулей этих чисел и перед полученным результатом ставим знак минус. Другими словами, при умножении двух чисел с разными знаками всегда ставится минус  в ответе.

Пример №7.

  • –6 80= –480
  • 48 (–3)= –144
Как умножать отрицательные числа?Правило умножения двух отрицательных чисел: умножаем их модули; в ответ записываем полученное положительное число. Другими словами, при умножении двух отрицательных чисел всегда получается положительное число.

Пример №8.

  • –25 (–4)=100
  • –21,7 (–10)=217
Как делить рациональные числа?

Правило деления двух рациональных чисел аналогично правилу умножения: при делении двух чисел с разными знаками в ответе получается отрицательное число. При делении двух отрицательных чисел получается положительное число.

Пример №9.

  • –215:5= –43
  • –642:(–2)= 321
Умножение и деление рационального числа и нуля
  1. При умножении рационального числа и нуля получается нуль.
  2. При делении нуля на рациональное число получается нуль.
  3. При делении рациональных чисел нужно помнить  правило о том, что на нуль делить нельзя!

Пример №10.

  • –314×0=0
  • 0×(–2,16)=0
  • 0 : (–31)=0

Даниил Романович | 📄 Скачать PDF |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *