Что такое рациональные числа?
Рациональные числа – это числа, которые можно представить в виде обыкновенной дроби, где a – целое число, а b – натуральное.
То есть все дробные и целые числа вместе образуют рациональные числа, так как любое целое можно представить в виде обыкновенной дроби, записав его в числитель, а в знаменателе надо написать 1.
Пример №1. Любые целые числа, например, 38, -24, 49 можно представить в виде обыкновенных дробей, их называют рациональными:
Действия с рациональными числами
Сложение (или вычитание) рационального числа и ноля
Для любого рационального числа применимо правило сложения (или вычитания): а + 0 = 0, a – 0 = a
Пример №2. –25,7 + 0 = –25,7 или 0+(–67)= –67
Аналогичное правило работает и для вычитания нуля.
Пример №3. 45 – 0=45 или – 67 – 0 = – 67
Как складывать отрицательные числа?
Чтобы сложить два отрицательных рациональных числа, складывают модули и перед полученным результатом ставят знак минус.
Модуль неотрицательного числа равен этому числу, модуль отрицательного числа равен числу, противоположному данному.
Пример №4. Складываем модули чисел –31 и –45, то есть модули чисел равны соответственно |–31|=31 и |–45|=45, значит, 31+45 = 76. Далее ставим минус в ответе. Запись самого решения выполняется без знака «модуля» следующим образом:
– 31+(–45)= –(31+45)= –76
Как складывать числа с разными знаками?
При сложении чисел с разными знаками необходимо из числа, которое больше по модулю, вычесть число, которое меньше по модулю, а перед полученным результатом поставить знак того слагаемого, модуль которого больше.
Пример 5.
45+(–98) = – (98–45)= –53 здесь большее по модулю число – это 98, поэтому из него будем вычитать число 45 и ставить в ответе знак «минус».
–43+81=81–43=38 здесь большее по модулю число это 81, поэтому из него вычитаем 43, соответственно результат будет положительный.
Правило вычитания рациональных чисел
Чтобы вычесть из одно числа другое, необходимо к уменьшаемому прибавить число, противоположное вычитаемому.
Пример №6.
10–18=10+(–18)= –8 здесь к уменьшаемому 10 прибавляем число противоположное 18, то есть прибавляем –18. Дальше работаем по известному правилу сложения чисел с разными знаками.
–7–(–2)= –7+2= –5 здесь к уменьшаемому –7 прибавляем число противоположное –2, то есть 2. Далее опять работает правило сложения чисел с разными знаками.
15–(–12)=15+12=27 здесь к уменьшаемому 15 прибавляем число противоположное –12, то есть 12. Далее – получаем сложение положительных чисел.
Как умножать рациональные числа с разными знаками?
Правило умножения двух рациональных чисел, содержащих разные знаки, гласит: выполняем умножение модулей этих чисел и перед полученным результатом ставим знак минус. Другими словами, при умножении двух чисел с разными знаками всегда ставится минус в ответе.
Пример №7.
–6 80= –480
48 (–3)= –144
Как умножать отрицательные числа? Правило умножения двух отрицательных чисел: умножаем их модули; в ответ записываем полученное положительное число. Другими словами, при умножении двух отрицательных чисел всегда получается положительное число.
Пример №8.
–25 (–4)=100
–21,7 (–10)=217
Как делить рациональные числа?
Правило деления двух рациональных чисел аналогично правилу умножения: при делении двух чисел с разными знаками в ответе получается отрицательное число. При делении двух отрицательных чисел получается положительное число.
Пример №9.
–215:5= –43
–642:(–2)= 321
Умножение и деление рационального числа и нуля
При умножении рационального числа и нуля получается нуль.
При делении нуля на рациональное число получается нуль.
При делении рациональных чисел нужно помнить правило о том, что на нуль делить нельзя !
Пример №10.
–314×0=0
0×(–2,16)=0
0 : (–31)=0
Задание 6OM21R
Найти значение выражения 4,9 – 9,4. Выполним вычитание десятичных дробей, где 9,4 больше по модулю, значит, ответ будет отрицательным. Итак, – (9,4 – 4,9)= – 4,5
Ответ: -4,5
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0806o
Найдите значение выражения:
В 1-м корне представляем 4900 в виде произведения 49·100. Оба эти числа являются точными квадратами: 49=72 и 100=102 . И, значит, число под корнем можно полностью вынести из-под него, применив правила работы с подкоренными выражениями. В целом получаем:
По аналогии извлекаем и 2-й корень:
В итоге получаем:
Ответ: 70,7
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0606o
Найдите значение выражения: –0,3·(–10)4 +4·(–10)2 –59
Для получения результата необходимо последовательно выполнить математические действия в соответствии с их приоритетом.
–0,3·(–10)4 +4·(–10)2 –59 =
Выполняем возведение в степень. Получаем числа, состоящие из единицы и следующего за ней количества нулей, равного показателю степени. При этом знаки «–» в скобках исчезают, поскольку показатели степеней четные. Получаем:
= –0,3·10000+4·100–59 =
Выполняем умножение. Для этого в числе 0,3 переносим десятичную запятую на 4 знака вправо (так как в 10000 четыре нуля), а к 4 дописываем, соответственно, 2 нуля. Получаем:
= –3000+400–59 =
Выполняем сложение –3000+400. Поскольку это числа с разными знаками, то вычитаем из большего модуля меньший и перед результатом ставим «–», поскольку число с большим модулем отрицательное. Получаем:
= –2600–59 =
Так как оба числа отрицательные, то складываем их модули и перед результатом ставим «–». Получаем:
= –(2600+59) = –2659
Ответ: -2659
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0605o
Найдите значение выражения: –13•(–9,3)–7,8
Это задание требует простого умения выполнять арифметические действия с десятичными дробями.
–13·(–9,3)–7,8 =
Сначала выполняем умножение. Умножаем –13 и –9,3 в столбик без учета знаков «–» перед сомножителями. В полученном произведении отделяем одну – последнюю – цифру десятичной запятой:
Знак произведения будет положительным, поскольку умножаются два отрицательных числа. Получаем:
= 120,9–7,8 =
Эту разность можно вычислить в столбик, но можно и устно. Выполним это действие в уме: вычитаем отдельно целые части и десятичные. Получаем:
= 113,1
Ответ: 113,1
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0604o
Найдите значение выражения: ¼ + 0,07 К данному заданию, как и к большинству заданий 1 модуля Алгебры, подход к решению заключается в переводе дроби от одного вида к другому. В нашем случае это переход от обыкновенной дроби к десятичной.
Переводим ¼ из обыкновенной дроби в десятичную. Делим 1 на 4, получаем 0,25. Затем переписываем выражение с использованием только десятичных дробей и вычисляем:
0,25 + 0,07 = 0,32
Ответ: 0,32
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0602o
Найдите значение выражения: Можно решать задачу напрямую — вычисляя значения последовательно, это не должно составить труда, однако решение будет долгим и с большими вычислениями. Здесь можно заметить, что 1/3 присутствует как в уменьшаемом — 6 • (1/3)², так и в вычитаемом — 17 • 1/3, поэтому её можно легко вынести за скобку.
1/3 • (6 • (1/3) — 17 )
Проведя вычисления в скобках, получим:
1/3 • ( 6 • (1/3) — 17 ) = 1/3 • (6 /3 — 17 ) = 1/3 • ( 2 — 17 ) = 1/3 • ( -15 )
Теперь умножим полученное значение -15 на 1/3:
1/3 • ( -15 ) = -5
Ответ: -5
pазбирался: Даниил Романович | обсудить разбор | оценить
Задание OM0601o
Найдите значение выражения: Задачу можно решать разными путями, а именно менять последовательность действий , но этот вариант решения рекомендуется для тех, кто уверен в своих возможностях и знает математику на отлично . Для остальных мы рекомендуем выполнить последовательно действия в числителе и знаменателе, а затем разделить числитель на знаменатель. Числитель вычислять в данном примере нет необходимости, это число 9.
Вычислим значение знаменателя:
4,5 • 2,5
Можно произвести вычисления в столбик, тогда получим:
4,5 • 2,5 = 11,25
Либо перевести дробь к простому виду :
4,5 • 2,5 = 4½ • 2 ½ = 9 / 2 • 5 / 2 = 45 / 4
Последний случай предпочтительней, так как для дальнейшей операции – деления числителя на знаменатель задача упрощается. Делим числитель на знаменатель, умножая числитель на перевернутую дробь в знаменателе:
9 / ( 45 / 4 ) = ( 9 / 1 ) • ( 4 / 45 ) = ( 9 • 4 ) / (1 • 45 )
9 и 45 можно сократить на 9:
( 9 • 4 ) / (1 • 45 ) = ( 1 • 4 )/ (1 • 5 ) = 4 / 5 = 8 / 10 = 0,8
Ответ: 0,8
pазбирался: Даниил Романович | обсудить разбор | оценить