Задание OM2501o
ОГЭ▿высокий уровень сложности▿другое(архив)
Окружности с центрами в точках I и J пересекаются в точках А и В, причём точки I и J лежат по одну сторону от прямой АВ. Докажите, что прямые АВ и IJ перпендикулярны.
📜Теория для решения:
📜Теория для решения:
Посмотреть решение
Алгоритм решения:
- Делаем чертеж.
- Определяем место расположения точек I и J.
- Используем свойство серединного перпендикуляра.
- Делаем вывод.
Решение:
1. Делаем чертеж, согласно условия:
2. Определяем место расположения точек I и J:
Точка I равноудалена от точек A и B. Аналогично, точка J равноудалена от концов отрезка AB.
3. По свойству геометрического места точек, равноудаленных от концов отрезка, эти точки расположены на серединном перпендикуляре к отрезку AB.
А если две точки I и J лежат на серединном перпендикуляре, прямая IJ совпадает с ним. Следовательно, прямые IJ и АВ перпендикулярны.
Ответ: доказано
Текст: Базанов Даниил, 721 👀
Подписаться
авторизуйтесь
Пожалуйста, войдите, чтобы прокомментировать
0 комментариев
Старые