Задание 24OM21R

ОГЭ▿базовый уровень сложности▿ОГЭ 2021(архив)
Биссектрисы углов А и D параллелограмма АВСD пересекаются в точке N, лежащей на стороне ВС. Докажите, что N – середина ВС.
📜Теория для решения: Четырехугольники

Решение

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

C:\Users\Учитель\Desktop\Inkedизображение_viber_2021-07-07_15-53-01-218_LI.jpg

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

Даниил Романович | Просмотров: 10 | Оценить:

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *