EF17529

Алгоритм решения 1.Записать исходные данные. 2.Выполнить решение в общем виде. 3.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Сопротивление каждого и резисторов: R1 = R2 = R3 = R4 = R5 = 100 Ом. • Напряжение на всем участке цепи: U = 12 В. Так как цепь состоит из двух параллельных цепочек, то […]

Продолжить чтение!

EF22543

Алгоритм решения 1.Записать исходные данные. 2.Записать закон Ома для полной цепи. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Сила то на первом резисторе: I1 = 1 А. • Внутреннее сопротивление источника тока: r = 1 Ом. • Сопротивление первого резистора: R1 = 3 Ом. • Сопротивление первого резистора: R2 […]

Продолжить чтение!

EF17511

Алгоритм решения 1.Записать исходные данные и перевести единицы измерения в СИ. 2.Записать закон Ома для полной цепи и формулу для нахождения энергии конденсатора. 3.Выполнить решение задачи в общем виде. 4.Подставить исходные данные и вычислить искомую величину. Решение Запишем исходные данные: • Емкость конденсатора: C = 2 мкФ. • ЭДС батареи: ε = 10 В. • Внутреннее сопротивление источника […]

Продолжить чтение!

EF17550

Алгоритм решения 1.Записать исходные данные. 2.Записать формулу для определения мощности тока, выделяемой на внутреннем сопротивлении источника, и выразить из нее сопротивление. 3.С помощью закона Ома для полной цепи найти неизвестные величины. 4.Выполнить решение в общем виде. 5.Выполнить вычисления, подставив известные и найденные данные. Решение Запишем исходные данные: • Внутренне сопротивление источника тока: r. • ЭДС источника тока: […]

Продолжить чтение!

EF18414

Алгоритм решения 1.Проверить истинность каждого утверждения. 2.Записать в ответе только истинные утверждения. Решение Согласно утверждению «а», ток через резистор в процессе наблюдения увеличивается. Но это не так, поскольку в таблице с течением времени сила тока уменьшается. Утверждение «а» неверно. Согласно утверждению «б», через 6 с после замыкания ключа конденсатор полностью зарядился. Если это было бы […]

Продолжить чтение!

EF17564

Алгоритм решения 1.Записать исходные данные. 2.Записать формулу для нахождения количества теплоты, выделенной внутри источника тока. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • ЭДС источника тока: ε = 3 В. • Внутреннее сопротивление источника тока: r = 1 Ом. • Сила тока в цепи: I = 2 А. • Напряжение […]

Продолжить чтение!

EF17573

Алгоритм решения 1.Записать исходные данные. 2.С помощью графика зависимости силы тока от напряжения вычислить мощность. 3.С помощью графика зависимости мощности от температуры спирали определить ее температуру. Решение Нас интересует сила тока, равная 2 А. По графику зависимости силы тока от напряжения этому значение соответствует U = 100 В. Мощность определяется формулой: P=IU=2·100=200 (Вт) Этой мощности соответствует […]

Продолжить чтение!

EF17608

Алгоритм решения Проверить истинность каждого из утверждений. Выбрать верный ответ. Решение Согласно первому утверждению, при коротком замыкании в цепи сила тока будет равна 6 А. Это действительно так, потому что при этом значении силы тока мощность равна нулю. А это значит, что сопротивление на внешней цепи было нулевым. Согласно второму утверждению, при силе тока в […]

Продолжить чтение!

EF18453

Алгоритм решения 1.Записать исходные данные. 2.С помощью закона Ома для участка и для полной цепи определить сопротивление на светодиоде. 3.Выполнить решение задачи в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • ЭДС первого источника тока: ε1=6 В. • Сила тока, проходящая через светодиод, подключенный к первому источнику тока: I1 = 0,1 […]

Продолжить чтение!

EF17530

Алгоритм решения 1.Определить правило, по которому можно определить направление вектора магнитной индукции в данном случае. 2.Применить выбранное правило и определить направление вектора магнитной индукции относительно рисунка. Решение По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора →B магнитной индукции мы будем использовать правило правой руки. Чтобы применить это правило, нам […]

Продолжить чтение!

EF18109

Алгоритм решения Вспомнить, как взаимодействуют магниты. Определить исходное положение полюсов. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки. Решение Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной […]

Продолжить чтение!

EF18266

Алгоритм решения Определить направление тока в соленоиде. Определить полюса соленоида. Установить, как будет взаимодействовать соленоид с магнитом. Установить, как будет себя вести магнит после замыкания электрической цепи. Решение Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида […]

Продолжить чтение!

EF22750

Алгоритм решения 1.Определить направление вектора магнитной индукции в точке А для первого проводника с током. 2.Определить направление вектора магнитной индукции в точке А для второго проводника с током. 3.Установить направление результирующего вектора магнитной индукции. Решение Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по […]

Продолжить чтение!

EF19061

Алгоритм решения 1.Определить направление вектора магнитной индукции в точке А для первого проводника с током. 2.Определить направление вектора магнитной индукции в точке А для второго проводника с током. 3.Установить направление результирующего вектора магнитной индукции. Решение Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по […]

Продолжить чтение!

EF18500

Алгоритм решения 1.Определить направление вектора магнитной индукции в точке А для первого проводника с током. 2.Определить направление вектора магнитной индукции в точке А для второго проводника с током. 3.Установить направление результирующего вектора магнитной индукции. Решение Направление вектора магнитной индукции в точке А для обоих проводников можно определить с помощью правила буравчика. Мысленно направим буравчик по […]

Продолжить чтение!

EF17704

Алгоритм решения 1.Определить направление вектора результирующей магнитной индукции первого и второго проводников в любой точке третьего проводника. 2.Используя правило левой руки, определить направление силы Ампера, действующей на третий проводник со стороны первых двух проводников. Решение На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор →B, равный геометрической сумме […]

Продолжить чтение!

EF18417

Алгоритм решения 1.Записать исходные данные и перевести единицы измерения величин в СИ. 2.Записать формулу для определения силы Ампера. 3.Выполнить решение в общем виде. 4.Подставить известные данные и вычислить искомую величину. Решение Запишем исходные данные: • Длина проводника: l = 10 см. • Площадь поперечного сечения проводника: S = 2⋅10–2 мм2. • Напряжение в проводнике: U = 2,4 В. • Модуль […]

Продолжить чтение!

EF17725

Алгоритм решения 1.Сделать список известных данных. 2.Определить, при каком условии рамка с током будет вращаться вокруг стороны CD. 3.Выполнить решение в общем виде. Решение По условию задачи известными данными являются: • Сторона квадратной рамки с током: a. • Вектор магнитной индукции однородного горизонтального магнитного поля, в котором лежит рамка: B. • Масса рамки: m. Пусть по рамке течёт […]

Продолжить чтение!

EF17600

Алгоритм решения Определить, каким способом можно найти направлений силы Лоренца, действующей на протон. Применить правила и найти направление силы Лоренца. Решение Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут […]

Продолжить чтение!

EF17749

Алгоритм решения 1.Записать формулу для определения силы Лоренца. 2.Установить, от чего зависят перечисленные в таблице физические величины. 3.Определить характер их изменения при изменении заряда. Решение Сила Лоренца определяется формулой: FЛ=|q|vBsin.α Если вместо протона взять альфа-частицу, то заряд увеличится вдвое, так как альфа-частица содержит 2 протона. Сила Лоренца прямо пропорционально зависит от величины заряда. Следовательно, она […]

Продолжить чтение!