Генетический код. Биосинтез белка | теория по биологии 🌱 основы генетики

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

А – аденин

Т – тимин

Ц – цитозин

Г — гуанин

В состав РНК входят:

А – аденин

У – урацил

Ц – цитозин

Г — гуанин

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

Свойства генетического кода

  1. Генетические код триплетен, то есть состоит из аминокислот, которые состоят из триплетов, а триплеты – 3 нуклеотида.
  2. Генетический код специфичен, один триплет кодирует одну аминокислоту. Посмотрите на таблицу аминокислот. При пересечении всех трех нуклеотидов у нас нет выбора между аминокислотами, таблица указывает лишь на одну определенную аминокислоту.
  3. Генетический код избыточен, одна аминокислота может быть закодирована более чем одним триплетом нуклеотидов. Здесь важно не запутаться. Опять смотрим на таблицу. Несмотря на то, что пересечение трех нуклеотидов дает 1 аминокислоту, мы видим повторы аминокислот в таблице. Например, аминокислота фенилаланин (сокращенно Фен) кодируется как триплетом УУУ, так и УУЦ. Есть аминокислоты и с большим количеством вариантов.
  4. Неперекрываемость генетического кода. Один и тот же нуклеотид не может входить в состав разных триплетов. Это не значит, что если у нас есть триплет УУУ, то рядом с ним не может быть триплета УЦГ. Это значит, что урацил в этих триплетах – не одна и та же молекула.
  5. Генетический код универсален, то есть, несмотря на все различия между живыми организмами, их генетическая информация кодируется одинаковыми аминокислотами, но в разных последовательностях и вариациях.
  6. Полярность генетического кода. В цепочке аминокислот есть триплеты, которые не несут информацию, а присутствуют для разделения цепи. Так как они не некодирующие, то в таблице у этих сочетаний букв стоит прочерк: УАА, УАГ, УГА.

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

Процесс транскрипции

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

Процесс трансляции

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

Текст: Ксения Алексеевна, 13k 👀

Задание ollbio10101120162017в1

В геном одного из растений ввели генно-инженерную конструкцию, похожую на использованную в предыдущем задании. Но промотор был заменён на другой – APETALA 3, который включается в лепестках и тычинках. В дальнейшем получили чистую линию трансгенных растений (линия №1). Другие растение трансформировали конструкцией, в которой кодирующая часть гена CRE была поставлена под промотор LEA, активирующийся на поздних стадиях формирования зародыша, а ко ди рующая часть гена Flp – под промотор CAULIFLOWER, который активен в чашелистиках и лепест ках. После этого удалось получить чистую линию №2. А. Какие органы будут светиться у растений из линии №1? Растений из линии №2? Б. Каким будет фенотип растений первого поколения гибридов между линиями №1 и №2? Для об основания ответа опишите структуру генно-инженерной конструкции с флуоресцентными белками. В. Каким будет расщепление по фенотипами и генотипам среди потомков второго поколения, полученных при самоопылении гибридов первого поколения? Считайте, что генно-инженерные конструкции наследуются независимо, а кроссинговер внутри конструкций не происходит

А. Красным светом будут светиться лепестки и тычинки, поскольку промотор APETALA 3 активен именно в этих органах. У линии №2 свечения не будет, поскольку в неё не были введены гены, кодирующе флуоресцентные белки.

Б. Поскольку рекомбиназа CRE подействовала на поздних этапах развития зародыша, то у всех потомков F1 произойдёт рекомбинация по сайтам LoxP. Строение этого участка ДНК будет следующим:

В чашелистиках и лепестках на эту последовательность ДНК подействует флиппаза. Это приведёт к тому, что участок между сайтами FRT «перевернётся»:

Это означает, что после включения промотора APETALA 3 в лепестках и тычинках лепестки будут светиться зелёным светом (результат двух рекомбинаций), а тычинки – синим светом (результат только одной рекомбинации). Остальные части растения не должны светиться.

В. Условно обозначим исходную вставку, несущую гены флуоресцирующих белков, в линии №1 как L1 (см. рисунок 1 в условии задачи), а отсутствие вставки обозначим как l0.
Аналогично обозначим генно-инженерную конструкцию, несущую гены рекомбиназы и флипазы, в линии №2 как R (см. рис. 2), а отсутствие вставки будем обозначать как r0. Тогда генотипы родительских линий:
Р: Линия №1 – L1L1 r0r0 × Линия №2 l0l0 RR

Сразу после скрещивания генотипы зигот:
F1: L1l0 Rr0

Но уже при формировании зародыша «включится» рекомбиназа CRE, что приведёт к изменению структуры ДНК-вставки L1. Обозначим получившийся вариант вставки, которая потенциально могла бы светиться синим светом, как L2 (см. рис. 3 из ответа Б). Ни в пестиках, ни в тычинках гены CRE и Flp не «включаются» (не экспрессируются) , поэтому потомкам F2 могут достаться либо L2, либо l0.

Гаметы: 1/4 L2R 1/4 L2r 1/4 l0R 1/4 l0r
Генотипы зигот сразу после образования

Жёлтой заливкой показаны генотипы, в которых не присутствует вставка с рекомбиназами, поэтому генотипы изменяться не будут. Красными точечными рамками показаны генотипы, в которых нет вставку с флуоресцентными белками. В этом случае рекомбинации также не
будет. У этих 1/4 растений с генотипом l0l0 свечения не будет ни в одном из органов. У 3/16 растений с генотипом L2l0 rr будет свечение и чашелистиков, и лепестков синим светом.

У остальных 9/16 растений с генотипами L2- R- на позних этапах образования зародыша произойдёт рекомбинация по сайтам LoxP. Вставка перейдёт обратно в форму L1, которая будет сохраняться по мере вегетативного развития. При образовании лепестков и чашелистиков
начнёт экспрессироваться ген Flp, что приведёт к рекомбинации по прямым повторам FRT. Участок между ними, содержащий гены DsRed и YFP, будет утрачен, а промотор APETALA 3 как бы «приблизится» к кодирующей части гена GFP. Таким образом, лепестки у этих
растений будут светиться зелёным светом, а тычинки – красным.

Ответ: среди потомков второго поколения 1/4 растений не будут светиться вообще, у 3/16 растений и чашелистики, и лепестки будут светиться синим светом, а у оставшихся 9/16 растений лепестки будут светиться зелёным, тогда как свечение тычинок будет красным

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120162017в1

Для исследования различных процессов в живых организмах используют флуоресцентные белки. При облучении, например, ультрафиолетовым светом такой белок светится в видимой части спектра. Получены зеленый (GFP, green fluorescent protein), синий (BFP, blue fluorescent protein), желтый (YFP, yellow fluorescent protein) и даже красный (DsRed, из коралла Discosoma striata) флуоресцентные белки. В генно-инженерных конструкциях их ставят под определенные промоторы. В зависимости от этого в живом объекте светятся разные части. 35 CaMV – промотор, который работает во всех клетках растений. Генный инженер создал конcтрукцию, схематическая карта которой приведена ниже. Промотор условно изображён в форме пятиугольника, кодирующие части генов – в форме серых прямоугольников, сайты Lox P и FRT – в виде стрелок, показывающих направление асимметричной части. Для получения белкового продукта необходимо, чтобы кодирующая часть оказалась на той же цепи ДНК, что и промотор, находилась в верной ориентации (и при этом – в сторону 5´- конца нити ДНК относительно промотора). Последовательности Lox P и FRT достаточно короткие и не мешают считыванию и-РНК. Чёрными ромбами обозначены терминаторы транскрипции. Считайте, что в этом месте матричный синтез и-РНК прекращается.А. Каким цветом должны светиться клетки, в которых содержится данная генно-инженерная конструкция? Почему? Б. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия рекомбиназы CRE. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток? В. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия флиппазы Flp. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток? Г. Предположим, что на исходную последовательнось ДНК в генно-инженерной конструкции сначала подействовали рекомбиназой CRE, а после этого – флиппазой Flp. Нарисуйте схему строения ДНК для этого случая. Каким будет свечение клеток?

В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P.
Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно
друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем

соединит по-новому две нити ДНК (т.е. произойдет рекомбинация).
Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp).

При рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT.

 

Предварительное доказательство (лемма) к задаче 9 (5 баллов).
1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек.

Затем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась».

2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем
молекулу ДНК и условно обозначим на ней буквами несколько точек.
Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке).

 

А. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом.
Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом:

Свечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток.
В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом:

Клетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»:

В этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120172018в2

У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков, круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти махровые цветки, у которых на месте тычинок развиваются лепестки. А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка. Предложите для него формулу. Б. Предположим, что в природной популяции платикодона крупноцветкового возникла форма с махровыми цветками (по остальным признакам форма не отличается от нормы). Образование махровых цветков определяется одной рецессивной мутацией. Ученые пересадили из природы на экспериментальный участок два мутантных и одно нормальное растение. Считая, что при опылении пыльца всех особей смешивается, пыльца из природных популяций не попадает на участок, и при этом возможно самоопыление, рассчитайте, каким может быть расщепление в потомстве первого поколения по генотипам и фенотипам. В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные, а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?

А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки
срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую
формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П(3) или * Ca5 Co(5) A5 G(3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П(3) или * Ca5 Co(5)+(5) G(3) .

При построении диаграммы должны выполняться следующие принципы:
1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса.
2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого
органа должно приходиться строго на промежуток между органами предыдущего круга. Для
пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На
рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью
тычинками.
3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга
(органы противолежат).
4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все
линии будут проводиться через центр завязи и центральную (медианную) жилку органа.
5. На рисунке показан цветок с центрально-угловой плацентацией (гинецей синкарпный). Между
гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.

 

Б. Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками.
Вариант 1. Немахровое растение – гомозигота АА.

Тогда среди потомков в данном скрещивании должно оказаться:
1/3 (≈33.3%) АА 2/3 (≈66.7%)
Аа или 1 АА : 2 Аа
По фенотипу все потомки окажутся немахровыми.
Вариант 2. Немахровое растение – гетерозигота Аа.
Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от
всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести
аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А.
Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а.

Таким образом, среди потомков первого поколения возможно следующее расщепление по
генотипам: 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%)
1 АА : 6 Аа : 5 аа
По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых
7 немахровых : 5 махровых

 

В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков
по генотипам и фенотипам во втором поколении.
1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину
гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3,
и 1/3 гамет, несущих аллель а.

Таким образом, среди потомков второго поколения возможно следующее расщепление по
генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%)
4 АА : 4 Аа : 1 аа
По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых
8 немахровых : 1 махровых.
Во втором случае (из природы было взято гетерозиготное немахровое растение) после того,
как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние
дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда:

Во втором случае расщепление среди потомков второго поколения будет:
по генотипам:
16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%)
25 АА : 30 Аа : 9 аа
По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых
40 немахровых : 9 махровых.

pазбирался: Надежда | обсудить разбор

Задание ollbio08101120172018в2

У многих видов бактерий для защиты от вирусов есть специальные ферменты – рестриктазы. Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl – рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах. Например, рестриктаза BglII расщепляет последовательность: При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», т.к. они могут соединяться между собой за счёт образования комплементарных пар оснований. Если такой комплекс обработать ферментом ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК. При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов. У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам. Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов. Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. В районе расщепления ДНК имеет последовательность нуклеотидов: Плазмиду обработали рестриктазой BglII до полного расщепления. После этого рестриктазу удалили и смесь фрагментов ДНК обработали ДНК-лигазой. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам. В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства. Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков. В результате деления каждая клетка образовала колонию генетически идентичных клеток. Было получено 51366 таких колоний. Клетки из каждой колонии пересеяли на среду, содержащую ампициллин, на которой рост дали 573 колонии. Клетки из колоний, выросших на ампициллине, пересеяли на среду с эритромицином. На этой среде выросла 51 колония. Из них выдели плазмидную ДНК, и оказалось что она представлена двумя разными по длине формами, причём каждой колонии был только один вид плазмиды. А. Какова (в %) эффективность трансформации клеток плазмидной ДНК? Б. Почему не все колонии, выросшие на ампициллине, дали рост на эритромицине? В. Как можно объяснить разную длину плазмид в устойчивых к эритромицину колониях? Г. Сколько всего размерных классов плазмид можно найти в колониях, устойчивых к ампицилину?

Сначала найдём место расщепления плазмиды рестриктазой BglII:

Таких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент:

Остаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину.

При сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к
ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину.
Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один
фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться
в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного
большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет
замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с
разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально.
А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в
результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут
на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578,
выросших на ампицилине. Эффективность трансформации представляет долю трансформированных
клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12%
Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в
результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому
антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину.
В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента).
Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов
и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить
по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно.
Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор

Задание EB2719t

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: АГТЦЦГАТГТГТ. Определите последовательность кодонов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Выписываем ДНК.

АГТЦЦГАТГТГТ

По принципу комплементарности строим иРНК на матрице ДНК.

УЦАГГЦУАЦАЦА

Теперь, опять же по принципу комплементарности, строим тРНК.

АГУ, ЦЦГ, АУГ, УГУ

Определяем с помощью таблицы аминокислотную последовательность синтезируемого белка по иРНК.

сер-гли-тир-тре

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319D

В некоторой молекуле ДНК на долю нуклеотидов с тимином приходится 14%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Для решения данного задания следует вспомнить правило Чаргаффа, которое гласит, что количество аденина равно количеству тимина, а количество гуанина – цитозину. Это согласуется и с правилом комплементарности.

По условию в молекуле ДНК на тимин приходится 14%. Исходя из правила Чаргаффа, на аденин тоже приходится 14%. Остаток приходится на гуанин и цитозин в равных количествах.

Аденин + Тимин = 14%+14% = 28%

Гуанин + Цитозин = 100% – 28% = 72%

Гуанин и Цитозин раздельно: 72% : 2 = 36%

Ответ: 36

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2719D

Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов:ЦГЦЦЦГАТАЦТАГАЦ

В результате мутации – замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

 
  1. По принципу комплементарности на основе ДНК находим иРНК.

ДНК: ЦГЦ-ЦЦГ-АТА-ЦТА-ГАЦ

иРНК: ГЦГ-ГГЦ-УАУ-ГАУ-ЦУГ

  1. Третья аминокислота, которая кодировалась до мутации состоит из нуклеотидов УАУ, то есть это аминокислота Тир.

Аминокислота Гис кодируется следующими триплетами: ЦАУ, ЦАЦ.

В условии сказано, что произошла замена лишь одного нуклеотида. Значит, аминокислота Гис кодируется последовательностью ЦАУ.

После мутации:

иРНК: ГЦГ-ГГЦ-ЦАУ-ГАУ-ЦУГ

ДНК: ЦГЦ-ЦЦГ-ГТА-ЦТА-ГАЦ

  1. Одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом благодаря такому свойству генетического кода как универсальность
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0520D

Установите соответствие между характеристиками и видами молекул: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ ВИДЫ МОЛЕКУЛ

А)   содержит один вид азотистых оснований

Б)    обеспечивает энергией реакции синтеза

В)    входит в состав рибосом

Г)    содержит макроэргические связи

Д)    содержит четыре вида азотистых оснований

Е)    служит матрицей при трансляции

1)     РНК

2)     АТФ


РНК расшифровывается как рибонуклеиновая кислота. РНК. Сама РНК состоит из цепи нуклеотидов. Нуклеотиды РНК включают в себя следующие части: фосфатная группа, сахар рибоза и азотистое основание. Одно из отличий ДНК от РНК – азотистые основания. Для РНК это аденин, урацил, гуанин и цитозин, а для ДНК вместо урацила тимин. РНК играют важную роль в биосинтезе белка в клетке. РНК входит в состав рибосом.

АТФ расшифровывается как аденозинтрифосфат. Это молекулы, которые являются универсальным аккумулятором энергии в клетке. АТФ включает в себя азотистое основание аденин, сахар рибозу и 3 остатка фосфорной кислоты. Фосфатные группы соединены макроэргическими связями, есть в них заключено много энергии, которая при разрушении этих связей высвобождается. Синтез АТФ происходит в животных клетках в митохондриях, а в растительных и в митохондриях, и в хлоропластах. АТФ можно обнаружить в цитоплазме, ядре, митохондриях, хлоропластах. В растительных клетках эти молекулы образуются в результате фотосинтеза, а в животных – в результате дыхания.

Один вид азотистых оснований содержит АТФ, это аденин.

Обеспечивает энергией тоже АТФ.

Входит в состав рибосом РНК.

Макроэргические связи содержит АТФ.

Четыре вида азостистых оснований содержит РНК, это аденин, урацил, гуанин, цитозин.

Служит матрицей при трансляции РНК, трансляция – один из этапов биосинтеза белка.

Ответ: 221211

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0320D

Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.

Одна аминокислота кодируется одним триплетом нуклеотидов. В условии сказано, что белок состоит из 102 аминокислот, значит, из 102 триплетов.

Ответ: 102

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319t

Участок гена состоит из 100 триплетов. Сколько аминокислот будет представлено в молекуле кодируемого этим участком фрагментом белка? В ответе запишите только соответствующее число.

Одна аминокислота кодируется одним триплетом нуклеотидов. Следовательно, 100 триплетов — 100 аминокислот.

Ответ: 100

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11284

Дана цепь ДНК: ЦТААТГТААЦЦА. Определите:

А) Первичную структуру закодированного белка.

Б) Процентное содержание различных видов нуклеотидов в этом гене (в двух цепях).

В) Длину этого гена.

Г) Длину белка.

https://bio-ege.sdamgia.ru/get_file?id=25056

Примечание от составителей сайта.

Длина 1 нуклеотида — 0,34 нм

Длина одной аминокислоты — 0,3 нм

Длина нуклеотида и аминокислоты — это табличные данные, их нужно знать (к условию не прилагаются)


Содержание верного ответа и указания к оцениванию Баллы
  1. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому и-РНК: ГАУ-УАЦ-АУУ-ГГУ.
  2. По таблице генетического кода определяем аминокислоты: асп — тир — иле — гли-.
  3. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому вторая цепь ДНК: ГАТ-ТАЦ-АТТ-ГГТ.
  4. Количество А=8; Т=8; Г=4; Ц=4. Все количество: 24, это 100%. Тогда

А = Т = 8, это (8х100%) : 24 = 33,3%. Г = Ц = 4, это (4х100%) : 24 = 16,7%.

  1. Длина гена: 12 х 0,34 нм (длина каждого нуклеотида) = 4,08 нм.
  2. Длина белка: 4 аминокислоты х 0,3 нм (длина каждой аминокислоты) = 1,2 нм.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11283

В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.
Содержание верного ответа и указания к оцениванию Баллы
  1. Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
  2. количество нуклеотидов с аденином составляет 24%;
  3. количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11273

Ген содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет в цепи ДНК, кодирующей белок? Сколько аминокислот будет закодировано данным фрагментом ДНК?
Содержание верного ответа и указания к оцениванию Баллы
  1. В кодирующей цепи ДНК в соответствии с правилом комплементарности нуклеотидов будет содержаться: нуклеотида Т — 150, нуклеотида А — 200, нуклеотида Ц — 250, нуклеотида Г — 150. Таким образом, всего А и Т по 350 нуклеотидов, Г и Ц по 400 нуклеотидов.
  2. Белок кодируется одной из цепей ДНК.
  3. Поскольку в каждой из цепей 1500/2=750 нуклеотидов, в ней 750/3=250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11282

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?
Содержание верного ответа и указания к оцениванию Баллы
  1. Первичная структура белка определяется последовательностью аминокислот, зашифрованных на участке молекулы ДНК. ДНК является матрицей для молекулы и-РНК.
  2. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
  3. 3) К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами и-РНК.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11276

В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  1. Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
  2. Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
  3. 3) Триплет состоит из 3 нуклеотидов, значит, количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21764

Последовательность аминокислот во фрагменте молекулы белка следующая: ФЕН-ГЛУ-МЕТ. Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка.https://bio-ege.sdamgia.ru/get_file?id=25056
  • Составим цепь иРНК. Для этого выпишем аминокислоты из условия и найдем соответствующие им триплеты нуклеотидов. Внимание! Одну аминокислоту могут кодировать несколько триплетов.

ФЕН – УУУ или УУЦ

ГЛУ – ГАА или ГАГ

МЕТ – АУГ

  • Определим триплеты ДНК по принципу комплементарности

УУУ-ААА

УУЦ-ААГ

ГАА-ЦТТ

ГАГ-ЦТЦ

АУГ-ТАЦ

Содержание верного ответа и указания к оцениванию Баллы
  1. Аминокислота ФЕН кодируется следующими триплетами иРНК: УУУ или УУЦ, следовательно, на ДНК ее кодируют триплеты ААА или ААГ.
  2. Аминокислота ГЛУ кодируется следующими триплетами иРНК: ГАА илиГАГ. Следовательно, на ДНК ее кодируют триплеты ЦТТ или ЦТЦ.
  3. 3) Аминокислота МЕТ кодируется триплетом иРНК АУГ. Следовательно, на ДНК ее кодирует триплет ТАЦ.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26715

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ТАТЦГАТТЦГЦЦТГА-3’

3’-АТАГЦТААГЦГГАЦТ-5’

Установите нуклеотидную последовательность участка тРНК который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента. Какой кодон иРНК будет соответствовать антикодону этой тРНК, если она переносит к месту синтеза белка аминокислоту ГЛУ. Ответ поясните. Для решения задания используйте таблицу генетического кода:

https://bio-ege.sdamgia.ru/get_file?id=25056

Выписываем себе смысловую цепь:

5’-ТАТ — ЦГА — ТТЦ — ГЦЦ — ТГА- 3’.

Выписываем транскрибируемую цепь:

3’-АТА — ГЦТ — ААГ — ЦГГ — АЦТ- 5’.

Строим тРНК по транскрибируемой ДНК:

5’УАУ3’, 5’ЦГА3’, 5’УУЦ3’, 5’ГЦЦ3’, 5’УГА3’.

Теперь, пользуясь табличкой генетического кода, обнаружим последовательности иРНК, кодирующие аминокислоту «Глу».

Это последовательности 5’- ГАА — 3’ и 5’- ГАГ — 3’.

Построим комплементарные этим иРНК триплеты тРНК:

3’ЦУУ5’ и  3’ЦУЦ5’. Нам необходимо понять, какая же иРНК, переносящая аминокислоту «Глу» комплементарна антикодону тРНК. Значит, мы должны найти полученные нами кодоны тРНК в построенной ранее цепочке тРНК. Однако, мы получили триплеты ориентированные от 5’ к 3’ концу, а в построенной цепочке наоборот.

Перепишем полученные триплеты в нужной ориентации:

3’УУЦ5’ и 3’ЦУЦ 5’.

Третий триплет последовательности тРНК совпадает с полученным нами триплетом 3’УУЦ5’.

Значит, иРНК, которая переносит аминокислоту «Глу» в данном случае имеет последовательность 5’- ГАА — 3’

Содержание верного ответа и указания к оцениванию Баллы
  1. 1) Нуклеотидная последовательность участка тРНК — УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;

    2) нуклеотидная последовательность кодона ГАА (находим по таблице генетического кода триплеты соответсвующие аминокислоте глу — ГАА; ГАГ);

    3) нуклеотидная последовательность антикодона тРНК — ЦУУ, что соответствует кодону ГАА по правилу комплементарности.

    Примечание.

    Внимательно читайте условие.

    Ключевое слово: «Известно, что все виды РНК синтезируются на ДНК-матрице.»

    В данном задании просят найти тРНК (трилистник), который построен на основе ДНК, а затем уже у нее вычислить местоположение антикодона.

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26713

Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода:https://bio-ege.sdamgia.ru/get_file?id=25056

Нам дана тРНК, она ориентирована от 5′ к 3′ концу.

Для удобства, на черновике, выписываем цепь тРНК из условия, чтобы не потерять какой-нибудь нуклеотид:

тРНК 5’УЦГ3′, 5’ЦГА3′, 5’ААУ3′, 5’ЦЦЦ3′

Теперь выписываем тРНК, ориентируя антикодоны не в направлении 5′ к 3′ концу, а наоборот. тРНК 3’ГЦУ5′, 3’АГЦ5′, 3’УАА5′, 3’ЦЦЦ5′

Примечание: когда записываем тРНК, то указываем 5′ и 3′ концы, ставим запятые между тРНК.

Картинки по запросу трнк

Теперь строим цепь иРНК, указываем 5′ и 3′ концы. тРНК ориентирована от 3′ к 5′ , поэтому, учитывая принцип антипараллельности, иРНК ориентирована наоборот, от 5′ и 3′:

Напоминаю, какие же есть пары у РНК: А комплементарна У, Г комплементарна Ц.

иРНК 5′ — ЦГА — УЦГ — АУУ — ГГГ — 3′

Теперь по принципу комплементарности строим цепь ДНК по иРНК, это будет транскрибируемая цепь ДНК. Над ней необходимо будет построить смысловую цепь ДНК. Опять же, не забываем про антипараллельность.

Напоминаю пары в ДНК: А комплементарна Т, Ц комплементарна Г

3′ — ГЦТ — АГЦ — ТАА — ЦЦЦ — 5′ — это наша транскрибируемая цепь. Строим по ней смысловую цепь: 5′ — ЦГА — ТЦГ — АТТ — ГГГ — 3′

Теперь определим последовательность получившихся аминокислот в иРНК. Для этого воспользуемся таблицей генетического кода, которая прилагается в задании.

Как пользоваться таблицей? .

Рассмотрим пример: последовательность аминокислоты: АГЦ

  1. Находим первое основание в первом столбце таблицы – А.
  2. Находим второе основание среди колонок 2-4. Наше основание – Г. Ему соответствует 4 столбец таблицы.
  3. Находим последнее, третье основание. У нас это Ц. В последнем столбике ищем в первой строке букву Ц. Теперь ищем пересечение с нужным столбиков, указывающим на второе основание.
  4. Получаем аминокислоту «сер»

C:\Users\Ксенья\Desktop\Безымянный.png

Определим наши аминокислоты:

ЦГА — «Арг»

УЦГ – «Сер»

АУУ– «Иле»

ГГГ – «Гли»

Итоговая последовательность: Арг-Сер-Иле-Гли

Содержание верного ответа и указания к оцениванию Баллы
  1. 1. По принципу комплементарности определяем последовательность иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’;

    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:

     

    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’

    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’

     

    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Арг-Сер-Иле-Гли

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11126

Чем строение молекулы ДНК отличается от строения молекулы иРНК?
  1. ДНК построена по типу двойной спирали, и-РНК — одноцепочечная.
  2. В нуклеотидах ДНК углевод дезоксирибоза и азотистое основание тимин
  3. В нуклеотидах и-РНК — рибоза и урацил.
Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB20604

Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

БИОСИНТЕЗ БЕЛКА

В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй — трансляция.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

  1. иРНК
  2. ДНК
  3. транскрипция
  4. мутация
  5. ген
  6. рибосома
  7. комплекс Гольджи
  8. фенотип

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: 


Ген — участок ДНК, в котором закодирована информация о структуре одного белка. 5)

Биосинтез белка начинается с синтеза иРНК, сборка происходит в цитоплазме при помощи рибосом.1) 6)

Первый этап — транскрипция (переписывание). 3)

Ответ: 5163

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21657

Установите правильную последовательность процессов биосинтеза белка. Запишите в таблицу соответствующую последовательность цифр.
  1. присоединение аминокислоты к пептиду
  2. синтез иРНК на ДНК
  3. узнавание кодоном антикодона
  4. объединение иРНК с рибосомой
  5. выход иРНК в цитоплазму

Расположим в правильном порядке:

  1. синтез иРНК на ДНК
  2. выход иРНК в цитоплазму
  3. объединение иРНК с рибосомой
  4. узнавание кодоном антикодона
  5. присоединение аминокислоты к пептиду
Ответ: 25431

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21756

Установите правильную последовательность реакций, происходящих в процессе биосинтеза белков. Запишите в таблицу соответствующую последовательность цифр.
  1. раскручивание молекулы ДНК
  2. объединение иРНК с рибосомой
  3. присоединение первой тРНК с определённой аминокислотой
  4. выход иРНК в цитоплазму
  5. постепенное наращивание полипептидной цепи
  6. синтез иРНК на одной из цепей ДНК

Раскручивание молекулы ДНК синтез иРНК на одной из цепей ДНК выход иРНК в цитоплазму объединение иРНК с рибосомой присоединение первой тРНК с определённой аминокислотой постепенное наращивание полипептидной цепи

Ответ: 164235

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB16828

Установите последовательность процессов при биосинтезе белка в клетке.
  1. образование пептидной связи между аминокислотами
  2. взаимодействие кодона иРНК и антикодона тРНК
  3. выход тРНК из рибосомы
  4. соединение иРНК с рибосомой
  5. выход иРНК из ядра в цитоплазму
  6. синтез иРНК

1. Образование функционального центра рибосомы — ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) — центр узнавания аминокислоты и П (пептидный) — центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарности возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс «кодон рРНК и тРНК с аминокислотой» перемещается в активный центр , где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматической сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) —> РНК (трансляция) —> белок

Ответ: 654213

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB10829

Установите, в какой последовательности образуются структуры молекулы белка.
  1. полипептидная цепь
  2. клубок или глобула
  3. полипептидная спираль
  4. структура из нескольких субъединиц

Картинки по запросу первичная вторичная третичная четвертичная структура белка

Третичная структура — глобула, четвертичная — несколько глобул.

Ответ: 1324

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB22097

Все при­ведённые ниже процессы, кроме двух, можно отнести к матричным реакциям в клетке. Определите два процесса, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.
  1. синтез РНК
  2. биосинтез белка
  3. хемосинтез
  4. фотолиз воды
  5. репликацию ДНК

Раз “матричные реакции», то они связаны с ДНК и РНК. Не стоит забывать, что они являются белками. К матричным реакциям, в таком случае, относятся: синтез РНК, репликация ДНК, биосинтез белка. Хемосинтез и фотолиз воды отношения к этому не имеют.

Ответ: 34

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0301

Длина фрагмента молекулы ДНК бактерии равняется 20,4 нм. Сколько аминокислот будет в белке, кодируемом данным фрагментом ДНК? Примечание. Длина одного нуклеотида 0,34 нм.

Обратите внимание на примечание, оно явно здесь не просто так.

Итак, сейчас перед нами практически задача по математике из начальной школы.

Первое наше действие: У нас есть бусы, длина которых 20,4 единиц измерения. Диаметр одной бусины 0,34 единиц измерения. Сколько здесь бусин? Естественно, нужно просто поделить все бусы на размер одной их составляющей:

20,4 : 0,34= 60.

Мы нашли количество нуклеотидов. У генетического кода есть такое свойство как триплетность. Она аминокислота кодируется тремя нуклеотидами. Чтобы узнать число аминокислот нужно разбить нуклеотиды на группки по три:

60: 3= 20

20 аминокислот будет в белке с длинной фрагмента ДНК 20,4 нм.

Ответ: 20

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2412

Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

Раз одна аминокислота кодируется тремя нуклеотидами, то 1 аминокислота=3 нуклеотида

25*3 = 75

Ответ: 75

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB1038

Все представленные на схеме вещества, кроме двух, имеют в своём составе азотистое основание — аденин. Определите два вещества, «выпадающие» из общего списка, и запишите

В состав ДНК и РНК точно входят Аденин, ведь отличаются они совсем другими азотистыми основаниями: Аденину в РНК по принципу комплементарности соответствует Урацил, а не Тимин. На картинке с тРНК вообще видны буквы А. Это и есть Аденин.

Внимание! Раз на первой картинке была ДНК, то это совсем не значит, что на второй и третьей тоже она. Это может быть любой другой белок, в состав которого Аденин может и не входить.

Остается еще АТФ. В ее она включает в себя Аденин, так что под решение вопроса не подходит.

Лишними являются вторичная и третичная структура неопределенного белка.

Ответ: 23

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6645

Сколько ами­но­кис­лот кодирует 900 нуклеотидов. В ответ запишите только соответствующее число.

1 аминокислота= 3 нуклеотида. Делим все нуклеотиды на 3, получаем аминокислоты.

900 : 3 = 300.

Ответ: 300

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB7512

Какой ан­ти­ко­дон транспортной РНК со­от­вет­ству­ет триплету ТГА в мо­ле­ку­ле ДНК?

Здесь можно разработать алгоритм. Если дана молекула ДНК, а нужно найти тРНК, то нужно:

  1. Записать информационную РНК (иРНК) по принципу комплементарности
  2. Записать транспортную ДНК по принципу комплементарности.
  3. Готово!

На нашем примере:

Тимину соответствует аденин

Гуанину — цитозин

Аденину — урацил, ведь это РНК

1) АЦУ

Аденину соответствует урацил

Цитозину — гуанин

Урацилу — аденин

2) УГА

Ответ: УГА

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6702

В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.

Раз у нас дано, что 20% от общего числа — гуанин, то это значит, то 20% приходится и на комплементарный ему цитозин.

20% + 20% = 40%- гуанин и цитозин.

Для аденина и тимина остается:

100% — 40% = 60%

60% — для аденина и тимина, а вопрос только про тимин,значит, число нужно поделить на 2:

60% : 2 = 30%

30% — на тимин

30% — на аденин

Ответ: 30

pазбирался: Ксения Алексеевна | обсудить разбор

ЕГЭ по биологии

Вся теория

Биология как наука и ее методыСистематика органического мираЦарство БактерииЦарство ГрибыЛишайникиПлауны и ХвощиПапоротникиГолосеменныеПокрытосеменныеКорень, побег, стебель и лист.Цветок и соцветия, плоды и семенаПростейшиеТип ГубкиТип КишечнополостныеТип Плоские червиТип Хордовые. Подтип Бесчерепные.Тип Моллюски (Mollusca)Тип Членистоногие (Arthropoda)Рыбы: хрящевые и костныеКласс Земноводные или Амфибии (Amphibia)Класс Пресмыкающиеся или Рептилии (Reptilia)Класс Птицы (Aves)Класс Млекопитающие (Mammalia)Организм человека. Системы органов. Ткани.Опорно-двигательная система. Скелет. Строение костей и мышц.Кровь: состав и функции, постоянство внутренней среды. Иммунная система.Кровеносная системаДыхательная системаПищеварительная системаВыделительная системаПоловая системаМетоды цитологии и клеточная теорияВнутренняя среда клеткиУглеводыЛипидыБелкиКлеточная мембрана и ядроЦитоплазма. Клеточный центр. Рибосомы.Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения.Митохондрии. Пластиды. Органоиды движения.Сходства и различия разных типов клетокЖизненный цикл клетки. Митоз. МейозБесполое размножениеПоловое размножениеГаметогенезОнтогенезМоно- и дигибридное скрещивание. Законы МенделяГенетическое определение полаИзменчивостьМутацииСреды обитания и экологические нишиТипы экологических взаимоотношенийПопуляции. Пищевые цепи и пирамидыЭволюционная теория: от Линнея до ДарвинаБиологический вид и его критерииПопуляции и их роль в эволюцииБорьба за существование и естественный отборВидообразованиеМакроэволюция и ее доказательстваНервная система и высшая нервная деятельностьБиологический словарьБаллы ЕГЭ по биологии по заданиям 2022Шкала перевода баллов ЕГЭ по биологии 2022Генетический состав популяции и изменения ее генофондаГлавные направления эволюции органического мираГипотезы происхождения жизни на ЗемлеЭтапы возникновения жизни на ЗемлеРазвитие жизни в Криптозое