Задание №27 ЕГЭ по физике
Первичный бал: 1 Сложность (от 1 до 3): 1 Среднее время выполнения: 1 мин.
Для того чтобы решить задание № 27, необходимо в первую очередь знание устройств и конструкций, имеющих практическое применение, а также элементов, формирующих такие конструкции. Дополнительно здесь требуется использование формул (законов и т.п.), позволяющих рассчитать искомые физические величины на основании значений, отображенных на измерительных приборах или непосредственно приведенных в условии задания. Наиболее востребованными в данном случае можно считать разделы электродинамики и оптики.
Задание ЕГЭ-Ф-ДВ2023-27
Алгоритм решения:
Решение:
Запишем исходные данные:
Из исходных данных видно, что системе СИ не соответствуют длина столбика ртути и атмосферное давление. Их необходимо перевести в метры (м) и Паскали (Па) соответственно. Однако мы можем этого не делать, если условимся, что при вычислениях будем использовать соразмерные величины. То есть, при расчете длин будем пользоваться миллиметрами (мм), а при расчете давлений — миллиметры ртутного столба (мм. рт. ст.). В рамках решения конкретной задачи это будет нам удобнее.
Сделаем поясняющие рисунки для случаев 1 и 2:
За l1 и l2 мы взяли длину столбика влажного воздуха в 1 и 2 случаях соответственно. За p0 берем атмосферное давление. А l — длина столбика ртути, которая остается для обоих случаев неизменной.
Относительная влажность воздуха определяется формулой:
p — это давление водяных паров, а pн — давление насыщенных водяных паров при той же температуре. С помощью этой формулы запишем относительные влажности воздуха в трубке для случаев 1 и 2 соответственно:
Выразим относительную влажность воздуха 2:
Теперь определим общее давление влажного воздуха в случаях 1 и 2. Когда трубка расположена горизонтально, ртуть, которая находится с открытого конца трубки, никак не давит на влажный воздух. Поэтому давление, оказываемое влажным воздухом, приходит в равновесие только с атмосферным давлением. Следовательно, давление влажного воздуха в 1 случае равно атмосферному давлению:
Когда трубка принимает вертикальное положение, и столбик ртути оказывается ниже столбика с влажным воздухом, влажный воздух приходит в равновесие с атмосферным воздухом вместе с этим столбиком ртути:
Причем ртуть находится в жидком состоянии, следовательно, ее давление может найти как давление в жидкостях:
Вместо высоты мы можем применить высоту столбика ртути (l):
Следовательно:
Или:
Также учитываем, что давление влажного воздуха и столбика ртути равно атмосферному давлению, которое может быть определено как произведение плотности ртути на ускорение свободного падения и высоту ртутного столба при таком давлении (обозначим за H):
Так как в условии сказано, что атмосферное давление равно 760 мм рт. ст., то высота ртутного столба в данном случае может быть принята за 760 мм.
В случаях 1 и 2 температура остается неизменной. Следовательно, речь идет об изотермическом процессе, для которого применим закон Бойля — Мариотта:
Объем влажного воздуха можем считать как произведение площади сечения трубки на высоту столбика с влажным воздухом. Тогда закон Бойля — Мариотта принимает вид:
Площадь сечения остается неизменной величиной, поэтому ее обозначаем без индекса. Следовательно, объем влажного воздуха при изменении положения трубки меняется так же, как меняется длина столбика с этим воздухом:
Давления влажного воздуха в случаях 1 и 2 мы выразили выше (они обозначены как (function(){function i(e){seraph_pds.View.InitFormulas();}if(seraph_pds && seraph_pds.View)i();else document.addEventListener(‘DOMContentLoaded’,i);})()pвл1 и pвл2 соответственно). Подставим их в выражение выше и преобразуем его:
Основное уравнение идеального газа (а мы будем считать влажный воздух в трубке идеальным):
Или:
Применим его для влажного воздуха и получим:
ν — количество моль водяного пара в трубке, νсв — количество моль сухого воздуха в трубке.
Так как речь идет об изотермическом процессе:
Поэтому отношение давлений водяных паров в 1 и 2 случае равно отношению давлений влажного воздуха в 1 и 2 случае:
Отсюда имеем:
Теперь подставим это в следующее выражение:
Отсюда:
Ответ: 72pазбирался: Алиса Никитина | обсудить разбор
Задание EF17986
При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.
Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.
Алгоритм решения
Решение
В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:
pф=hνc
Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:
pп=Nhνc
В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:
F1=pпt=Nthνc
В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:
pф=∣∣−pфп∣∣
Поэтому отраженная волна будет иметь импульс:
pов=−N´pф=−N´hνc
N´ — количество отраженных фотонов.
В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:
Δp=pов−pп=−Npф−N´pф=−(N+N´)pф
Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:
Δ(pп+pпл)=0
Отсюда:
Δpпл=Δpп
Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:
F2=pплt=N+N´thνc
Если зеркала отражает хорошо, то N ≈ N´. Тогда:
F2≈2F1
Отсюда видно, что сила давления света увеличится вдвое.
pазбирался: Алиса Никитина | обсудить разбор
Задание EF22683
В комнате находится открытая сверху U-образная трубка, в которую налита ртуть (рис. а). Левое колено трубки плотно закрывают пробкой (рис. б), после чего температура в комнате увеличивается. Что произойдёт с уровнями ртути в коленах трубки? Атмосферное давление считать неизменным. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения.
Алгоритм решения
- Установить, что изменится после того, как одно колено сосуда будет закупорено.
- Установить, что изменится после того, как температура воздуха увеличится.
Решение
Изначально давление, оказываемое атмосферой на поверхность ртути в обоих коленах, равно. Это следует из закона Паскаля и условия равновесия. Когда одно колено сообщающихся сосудов будет закупорено, сначала давление под пробкой будет равно атмосферному давлению. Но при изменении прочих условий уровень жидкостей в коленах не будет одинаков. Это связано с изменением давления, оказываемого на поверхности жидкостей в закупоренном и открытом коленах.
Если же увеличить температуру воздуха, то воздух под пробкой тоже нагреется. От этого его объем увеличится, что приведет к росту давления, которое окажется больше атмосферного на величину, равную ∆p = ρвg∆h. Суммарное давление, оказываемое со стороны закупоренного колена, будет равно сумме атмосферного давления и давления ∆p: pз = pатм + ρвg∆h. Со стороны открытого колена по-прежнему будет оказываться атмосферное давление: pо = pатм. Поэтому избыточное давление под пробкой начнет выталкивать часть ртути из левого колена в правое до тех пор, пока не наступит равновесие. При условии, что диаметр трубок одинаковый, это произойдет тогда, когда уровень ртути в открытой трубке увеличится на высоту ∆h — на ту высоту, на которую понизится уровень ртути в закупоренной трубке.
Ответ: уровень ртути в закрытом колене понизится, а в открытом — понизится.
pазбирался: Алиса Никитина | обсудить разбор
Задание EF19012
На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.
Алгоритм решения
Решение
График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:
T=2−Ek3
Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.
Запишем уравнение Менделеева — Клапейрона:
pV=νRT
Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:
νR=p1V1T1=p2V2T2
Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.
Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.
Ответ:
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18574
Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.
Алгоритм решения
Решение
На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.
На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:
C=ε0εSd
S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.
Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.
На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:
C=qU
Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.
Ответ: Увеличатсяpазбирался: Алиса Никитина | обсудить разбор
Задание EF18266
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
- Определить направление тока в соленоиде.
- Определить полюса соленоида.
- Установить, как будет взаимодействовать соленоид с магнитом.
- Установить, как будет себя вести магнит после замыкания электрической цепи.
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17686
Катушка, обладающая индуктивностью L, соединена с источником питания с ЭДС ε и двумя одинаковыми резисторами R. Электрическая схема соединения показана на рис. 1. В начальный момент ключ в цепи разомкнут.
В момент времени t=0 ключ замыкают, что приводит к изменениям силы тока, регистрируемым амперметром, как показано на рис. 2. Основываясь на известных физических законах, объясните, почему при замыкании ключа сила тока плавно увеличивается до некоторого нового значения – I1. Определите значение силы тока I1. Внутренним сопротивлением источника тока пренебречь.
Алгоритм решения
Решение
На рисунке 1 изображена схема, в которой катушка индуктивности подключена последовательно к двум параллельно соединенным резистором и источнику тока. Амперметр тоже соединен с катушкой последовательно, следовательно, он определяет силу тока, проходящую через нее.
Для описания процесса можно подходит закон Ома для полной цепи и формула ЭДС самоиндукции, которая будет возникать при изменении силы тока в цепи:
IRобщ=ε+εis
εis=−LΔIΔt
До замыкания ключа общее сопротивление цепи равно сопротивлению одного резистора — R. Так как ток в этом случае постоянный, ЭДС самоиндукции отсутствует. Тогда закон Ома принимает вид:
I0=εR
Когда ключ замыкается, сопротивление в цепи уменьшается вдвое, так как подключается второй резистор:
1Rобщ=1R+1R=2R
Rобщ=0,5R
Изменение сопротивления в цепи вызывает изменение силы тока. В результате возникает ЭДС самоиндукции. Она препятствует изменению силы тока через катушку в соответствии с правилом Ленца. Поэтому сила тока через катушку при замыкании ключа не претерпевает скачка.
Постепенно ЭДС самоиндукции уменьшается до нуля, а сила тока через катушку плавно возрастает до значения:
I1=ε0,5R=2I0
На рисунке 2 начальная сила тока равна 3 А. Следовательно:
I1=3·2=6 (А)
Ответ: 6pазбирался: Алиса Никитина | обсудить разбор
Задание EF22579
К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.
Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.
Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.
Алгоритм решения
Решение
В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:
ν0=12π√LC
По мере увеличения внешней частоты от нуля до ν0 амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν0. Затем амплитуда начинает убывать.
В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:
ν0min=12π√LminC
ν0max=12π√LmaxC
Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν0 всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17682
Алгоритм решения
- Записать исходные данные.
- Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
- Выразить скорость грузовика из уравнения его движения.
- Записать уравнение движения мотоциклиста.
- Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
- Подставить время в формулу скорости грузовика и вычислить ее.
Решение
Исходные данные:
- Координата встречи грузовика и мотоциклиста: x = 150 м.
- Время запаздывания мотоциклиста: tзапазд = 5 с.
- Ускорение, с которым мотоциклист начал движение: a = 3 м/с2.
Запишем уравнение движения грузовика:
Так как начальная координата равна нулю, это уравнение примет вид:
Отсюда скорость движения грузовика равна:
Запишем уравнение движения мотоциклиста:
Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:
Найдем время, через которое грузовик и мотоциклист встретились:
Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:
Ответ: 10
pазбирался: Алиса Никитина | обсудить разбор
👀 5.7k