Задание №29 ЕГЭ по физике

комбинированные задачи по механике
Первичный бал: 1 Сложность (от 1 до 3): 1 Среднее время выполнения: 1 мин.

Описание задания

Особенность задания № 29 заключается в том, что в нем требуется использование материалов не менее чем из двух-трех разделов механики. Актуальные сведения, необходимые для решения задания, приведены в разделе теории. Законы сохранения, силы, действующие в макромире, и другая нужная информация содержится в разделах теории соответствующих типовых заданий по механике.

Задание EF17513 Полый конус с углом при вершине 2α вращается с угловой скоростью ω вокруг вертикальной оси, совпадающей с его осью симметрии. Вершина конуса обращена вверх. На внешней поверхности конуса находится небольшая шайба, коэффициент трения которой о поверхность конуса равен μ. При каком максимальном расстоянии L от вершины шайба будет неподвижна относительно конуса? Сделайте схематический рисунок с указанием сил, действующих на шайбу.

Алгоритм решения

1.Построить чертеж. Указать все силы, действующие на шайбу. Выбрать систему координат.
2.Записать второй закон Ньютона для описания движения шайбы в векторном виде.
3.Записать второй закон Ньютона в виде проекций на оси.
4.Через систему уравнений вывести искомую величину.

Решение

Так как шайба вращается, покоясь на поверхности конуса, на нее действуют четыре силы: сила трения, сила тяжести, сила реакции опоры и центростремительная сила. Изобразим их на чертеже. Выберем систему координат, параллельную оси вращения.

Второй закон Ньютона в векторном виде выглядит следующим образом:

Теперь запишем этот закон в проекциях на оси ОХ и ОУ соответственно:

Так как шайба покоится относительно поверхности конуса, сила трения равна силе трения покоя:

Максимальное значение силы трения равно:

Принимая в учет силу трения покоя, проекции на оси ОХ и ОУ примут следующий вид:

Запишем систему уравнение в следующем виде:

Поделим первое уравнение на второе и получим:

Сделаем сокращения и получим:

Отсюда центростремительное ускорение равно:

Но также известно, что центростремительное ускорение равно произведению квадрата угловой скорости на радиус окружности:

Радиус окружности, по которой вращается шайба вместе с конусом, можно вычислить по формуле:

Отсюда центростремительное ускорение равно:

Выразим искомую величину L:

Подставим в это выражение выведенную для центростремительного ускорения формулу и получим:

Поделим числитель на синус угла α, чтобы упростить выражение, и получим:

.

.

.


pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18057

На границе раздела двух несмешивающихся жидкостей, имеющих плотности ρ1 = 400 кг/м3 и ρ2 = 2ρ1, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ, чтобы выше границы раздела жидкостей была одна четверть его объёма?

Алгоритм решения

1.Записать исходные данные.
2.Выполнить рисунок.
3.Записать второй закон Ньютона в векторной форме.
4.Записать второй закон Ньютона в проекции на ось ординат.
5.Выполнить общее решение.
6.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Плотность первой жидкости: ρ1 = 400 кг/м3.
 Плотность второй жидкости: ρ2 = 2ρ1.
 Объем шарика: V.
 Объем шарика выше границы раздела двух жидкостей: V1 = V/4.
 Объем шарика выше границы раздела двух жидкостей: V2 = 3V/4.

Построим рисунок и укажем все силы, действующие на шарик:

Запишем второй закон Ньютона в векторном виде:

mg+FA1+FA2=0

Запишем второй закон Ньютона в виде проекции на ось ординат:

mg=FA1+FA2

Выразим массу тела через его объем и плотность, выразим выталкивающие силы через закон Архимеда и получим:

ρVg=ρ1gV1+ρ2gV2

Преобразуем выражение, сократив ускорение свободного падения и подставив выражения для объемов погруженных в жидкости частей тела, а также выражение для плотности второй жидкости:

ρV=ρ1V4..+2ρ13V4..

Объемы сокращаются. Остается:

ρ=ρ14..+2ρ134..=7ρ14..=7·4004..=700 (кгм3..)

.

.

.

.

Ответ: 700

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18271 Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 235.92U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.

Алгоритм решения

1.Записать исходные данные и перевести их в СИ.
2.Записать формулу для определения КПД атомной электростанции.
3.Решить задачу в общем виде.
4.Подставить известные данные и вычислить искомую величину.
5.Массовое число: A = 235.
6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.
 Масса урана-235: m = 1,4 кг.
 Время, в течение которого происходит деление: t = 1 неделя.
 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ..100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:


pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17562 С высоты Н над землёй начинает свободно падать стальной шарик, который через время t = 0,4  c сталкивается с плитой, наклонённой под углом 30° к горизонту. После абсолютно упругого удара он движется по траектории, верхняя точка которой находится на высоте h = 1,4  м над землёй. Чему равна высота H? Сделайте схематический рисунок, поясняющий решение.

Алгоритм решения

1.Записать исходные данные.
2.Построить на чертеже начальное и конечное положения тела. Выбрать систему координат.
3.Выбрать нулевой уровень для определения потенциальной энергии.
4.Записать закон сохранения энергии.
5.Решить задачу в общем виде.
6.Подставить числовые значения и произвести вычисления.

Решение

Запишем исходные данные:

 Время падения стального шарика: t = 0,4  c.
 Верхняя точка траектории после абсолютно упругого удара о плиту: h = 1,4  м.
 Угол наклона плиты: α = 30о.

Построим чертеж и укажем на нем все необходимое:

Нулевой уровень — точка D.

Закон сохранения энергии:

Ek0 + Ep0 = Ek + Ep

Потенциальная энергия шарика в точке А равна:

EpA = mgH

Кинетическая энергия шарика в точке А равна нулю, так как скорость в начале свободного падения нулевая.

В момент перед упругим ударом с плитой в точке В потенциальная энергия шарика минимальна. Она равна:

EpB=mgl1

Перед ударом кинетическая энергия шарика равна:

EkB=mv22..

Согласно закону сохранения энергии:

EpA=EpB+EkB

mgH=mgl1+mv22..

Отсюда высота H равна:

H=mgl1mg..+mv22mg..=l1+v22g..

Относительно точки В шарик поднимется на высоту h – l1. Но данный участок движения можно рассматривать как движение тела, брошенного под углом к горизонту. В таком случае высота полета определяется формулой:

hl1=v2sin2.β2g..=v2sin2.(902α)o2g..

Отсюда:

l1=hv2sin2.(902α)o2g..

Шарик падал в течение времени t, поэтому мы можем рассчитать высоту шарика над плитой и его скорость в точке В:

v=gt

Следовательно:

H=l1+v22g..=h(gt)2sin2.(902α)o2g..+(gt)22g..

H=hgt2sin2.(902α)2..+gt22..=hgt22..(sin2.(902α)o1)

H=1,410·0,422..(sin2.(9060)o1)

H=1,45·0,16(sin2.30o1)

H=1,40,8((12..)21)=1,40,8(14..1)

H=1,4+0,6=2 (м)

.

.

.

.

Ответ: 20

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18127

Небольшие шарики, массы которых m = 30 г и M = 60 г, соединены лёгким стержнем и помещены в гладкую сферическую выемку.

В начальный момент шарики удерживаются в положении, изображённом на рисунке. Когда их отпустили без толчка, шарики стали скользить по поверхности выемки. Максимальная высота подъёма шарика массой М относительно нижней точки выемки оказалась равной 12 см. Каков радиус выемки R?

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Сделать чертеж конечного положения шариков. Обозначить их высоты, выбрать нулевой уровень отсчета потенциальной энергии. Выбрать систему координат.
3.Записать закон сохранения энергии.
4.Выполнить общее решение задачи.
5.Подставить известные данные и выполнить вычисление искомой величины.

Решение

Запишем исходные величины:

 Масса первого шарика: m = 30 г.
 Масса второго шарика: M = 60 г.
 Максимальная высота подъема шарика М: H = 12 см.

Переведем единицы измерения величин в СИ:

30 г = 0,03 кг

60 г = 0,06 кг

12 см = 0,12 м

Выполним чертеж:

Нулевой уровень — нижняя точка выемки.

Запишем закон сохранения энергии:

Ek0 + Ep0 = Ek + Ep = const

В начальном положении кинетическая энергия обоих шариков равна 0. Потенциальная энергия шарика М тоже равна нулю, так как он находится на нулевом уровне. Потенциальная энергия шарика m равна:

Ep0m = mgR

Кинетическая энергия шариков после установления равновесия тоже будет равна нулю. Но b[ потенциальная энергия будет отличной от нуля:

Epm = mgh

EpM = MgH

Поэтому закон сохранения энергии применительно к задаче примет вид:

mgR = mgh + MgH

Преобразуем выражение и получим:

mgRmgh=MgH

Rh=MgHmg..=MHm..

При движении гантели по поверхности выемки высоты подъема большого и малого шаров связаны. Рассмотрим прямоугольные треугольники OmA и OMB. Для них справедливы следующие равенства:

MB = mA = R – h

OA = OB = R – H

OM = Om = R

Это дает нам право воспользоваться теоремой Пифагора:

(Rh)2=R2OA2=R2(RH)2

Следовательно:

(Rh)2=R2(R22RH+H2)=2RHH2

Подставим в это выражение правую часть ранее полученного выражения:.

Rh=MHm..

(MHm..)2=2RHH2

Теперь можем выразить и вычислить радиус:

2RH=(MHm..)2+H2

R=(MHm..)2+H22H..

R=(Mm..)2H2..+H2..=(0,060,03..)20,122..+0,122..=0,3 (м)

.

.

Ответ: 0,3

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18982

Небольшая шайба массой m=10 г, начав движение из нижней точки закреплённого вертикального гладкого кольца радиусом R=0,14 м, скользит по его внутренней поверхности. На высоте h=0,18м она отрывается от кольца и свободно падает. Какую кинетическую энергию имела шайба в начале движения? Сделайте рисунок с указанием сил, действующих на шайбу в точке А.

Алгоритм решения

1.Записать исходные данные. Перевести единицы измерения величин в СИ.
2.Сделать чертеж и указать все силы, действующие на шайбу в точке А. Указать их направление и выбрать систему координат.
3.Записать второй закон Ньютона в векторной форме.
4.Записать второй закон Ньютона в виде проекций на ось ОХ.
5.Записать формулу, определяющую кинетическую энергию тела.
6.Применить геометрические законы для нахождения величины радиуса кольца и формулу центростремительного ускорения для нахождения скорости тела.
7.Записать решение в общем виде, подставить исходные данные и произвести вычисления.

Решение

Запишем исходные данные:

 Масса шайбы m = 10 г = 0,01 кг.
 Радиус кольца, по которому перемещалась шайба, составляет R = 0,14 м.
 Высота, с которой шайба упала, равна h = 0,18 м.

Сделаем чертеж. Выберем систему координат такую, чтобы направление линейной скорости шайбы в точке совпадала с направлением оси ОУ.

Запишем второй закон Ньютона в векторной форме:

Под ускорением в этой записи понимается полное ускорение, составляющими которого является центростремительное и тангенциальное ускорение, направленное касательно к окружности (на рисунке мы его не обозначили, так как оно нам не понадобится).

Запишем проекцию на ось ОХ. Учтем, что в точке А шайба отрывается от кольца и падает. Следовательно, нормальная реакции опоры равна нулю:

mg cosα = maц.с.

Кинетическая энергия тела определяется формулой:

Выразим центростремительное ускорение из проекции на ось ОХ:

Но центростремительное ускорение также определяется формулой:

Приравняем правые части уравнений и получим:

Квадрат скорости будет равен:

Следовательно, кинетическая энергия равна:

Чтобы избавиться от неизвестных величин, обратимся к геометрии:

Из рисунка видно, что высота h есть сумма радиуса окружности и произведения радиуса на косинус угла α:

h = R + Rcosα

Отсюда следует, что:

Rcosα = h – R

Подставим это выражение в формулу кинетической энергии и выполним вычисления:

Отсюда следует, что кинетическая энергия шарика в начале движения равна 2 мДж.

.


pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18920

На вертикальной оси укреплена гладкая горизонтальная штанга, по которой могут перемещаться два груза массами m1 = 200 г и m2 = 300 г, связанные нерастяжимой невесомой нитью длиной l = 20 см. Нить закрепили на оси так, что грузы располагаются по разные стороны от оси и натяжение нити с обеих сторон от оси при вращении штанги одинаково (см. рисунок). Определите модуль силы натяжения Т нити, соединяющей грузы, при вращении штанги с частотой 600 об/мин.

Алгоритм решения

1.Записать исходные данные. Перевести их в СИ.
2.Сделать чертеж, обозначив все силы, действующие на систему тел, их направления. Выбрать систему координат.
3.Записать второй закон Ньютона в векторной форме для каждого из тел.
4.Записать второй закон Ньютона для каждого из грузов в виде проекций на ось ОХ.
5.Вывести формулу для радиуса окружности, по которой движется любой из грузов.
6.Вывести формулу для вычисления силы натяжения нити, подставить известные данные и произвести вычисления.

Решение

Запишем исходные данные, сразу переведя их в СИ:

 Масса первого груза m1 = 200 г = 0,2 кг.
 Масса первого груза m2 = 300 г = 0,3 кг.
 Длина нити l = 20 см = 0,2 м.
 Натяжение нити с обеих сторон одинаково, следовательно: T1 = T2 = T.
 Частота вращения штанги ν = 600 об./мин. = 10 об./с.

Сделаем чертеж, обозначив все силы. Учтем, что сила натяжения нити равна с обеих сторон. Выберем систему координат, в которой ось ОУ параллельна оси вращения.

Запишем второй закон Ньютона для первого и второго груза соответственно:

Запишем проекции на ось ОХ для каждого из тел:

T = m1aц.с.1

T = m2aц.с.2

Центростремительное ускорение также определяется формулой:

aц.с. = ω2R

Угловая скорость определяется формулой:

ω = 2πν

Следовательно, центростремительное ускорение равно:

aц.с. = 4π2ν2R

Применим эту формулу для обоих грузов:

aц.с.1 = 4π2ν2R1

aц.с.2 = 4π2ν2R2

Сумма радиусов окружностей, по которым вращаются грузы, есть длина нити:

R1 + R2 = l

Выразим радиус окружности, по которой вращается второй груз:

R2 = l – R1

Так как грузы связаны между собой, и ни один из них не перевешивает другой:

m1gR1 = m2gR2

Ускорение свободного падения взаимоуничтожается. Получаем:

Подставим радиус второй окружности и выразим радиус первой окружности:

Следовательно, центростремительное ускорение первого груза равно:

Теперь возьмем проекцию на ось ОХ для первого тела и вставим в формулу найденное центростремительное ускорение для первого тела:

Подставим известные данные и вычислим силу натяжения нити:


pазбирался: Алиса Никитина | обсудить разбор | оценить


👀 4k |

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *