треугольники, четырехугольники, многоугольники и их элементы Первичный бал: 1 Сложность (от 1 до 3): 1 Среднее время выполнения: 2 мин.
В задании 16 проверяется умение выполнять действия с геометрическими фигурами, координатами и векторами. По спецификации ОГЭ здесь могут встретиться задания, связанные с необходимостью нахождения длин, углов и площадей.
Проверьте, что вы не ошибаетесь в определениях тригонометрических функций острого угла в прямоугольном треугольнике.
Кроме того, убедитесь, что все данные задачи отражены на вашем чертеже. При необходимости применяйте теорему Пифагора. Если сюжет задачи развивается в равнобедренном треугольнике, то учтите, что высота, опущенная из вершины такого треугольника, делит его на два равных прямоугольных треугольника и далее задача решается в прямоугольном треугольнике. Если события происходят в окружности, то, помимо всего прочего, надо учесть, что вписанный угол равен половине центрального угла, который опирается на ту же дугу. Пусть треугольник вписан в окружность. Если этот треугольник остроугольный, то центр окружности лежит внутри треугольника. Если этот треугольник тупоугольный, то центр окружности лежит вне треугольника. А если это прямоугольный треугольник, то центр окружности лежит на середине гипотенузы.
В 16 задании нам предстоит продемонстрировать свои знания в нахождении неизвестных элементов треугольника. Это могут быть углы, стороны, высоты, медианы или биссектрисы. Могут встретится задания на нахождение площади.
Теория к заданию №15
Так как задания №16 основаны на теории по теме “треугольники”, рассмотрим базовые понятия, определения и формулы.
Вначале предлагаю рассмотреть углы на плоскости:
Многие задачи построены на нахождении медиан и биссектристреугольника:
Биссектриса – отрезок, выходящий из вершины треугольника и делящий угол пополам.
Биссектриса делит противолежащую сторону на части , пропорциональные прилежащим сторонам: ab : ac = b : c
Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.
Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
Медиана:
Теперь вспомним основные формулы нахождения площади треугольника:
Во многих задачах встречается понятие средняя линия:
Средняя линия – отрезок, соединяющий середины двух сторон треугольника.
Средняя линия параллельна третьей стороне и равна её половине.
Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного.
Теперь рассмотрим частные случаи треугольников – равнобедренный, равносторонний, прямоугольный.
Перейдем к рассмотрению равнобедренного треугольника:
Равнобедренный треугольник – треугольник, у которого две стороны равны.
Свойства равнобедренного треугольника:
Углы, при основании треугольника, равны.
Высота, проведенная из вершины, является биссектрисой и медианой.
Рассмотрим равносторонний треугольник:
Равносторонний треугольник – треугольник, у которого все стороны равны.
Все углы равны 60°.
Каждая из высот является одновременно биссектрисой и медианой.
Центры описанной и вписанной окружностей совпадают.
Прямоугольный треугольник:
👀 26.5k |
4 комментариев
А как решать квадратичные системы неравенств?
Находите корни уравнения, рисуете параболу (ветви : вниз, вверх), расставляете знаки, выбираете ответ в зависимости от знака неравенства.
А как решать квадратичные системы неравенств?
Находите корни уравнения, рисуете параболу (ветви : вниз, вверх), расставляете знаки, выбираете ответ в зависимости от знака неравенства.
лучший сайт,спасибо
очень помогает