Первичный бал: 1 Сложность (от 1 до 3): 2 Среднее время выполнения: 2 мин.

Задание №14 ОГЭ по математике

задачи на прогрессии

Описание задания В 14-ом задании мы сталкиваемся с прогрессиями - общими понятиями. Ответом в задании 14 является целое число или конечная десятичная дробь.

Теория к заданию №14

Начнем теоретическую справку об определениях прогрессий.

Арифметическая прогрессия:

Последовательность, у которой задан первый член a1, а каждый следующий равен предыдущему, сложенному с одним и тем же числом d, называется арифметической прогрессией.

an+1 = an + d

где d – разность прогрессии

арифметическая прогрессия

Геометрическая прогрессия:

Последовательность, у которой задан первый член b1 не равен 0, а каждый следующий равен предыдущему, умноженному на одно и то же число q не равное 0, называется геометрической прогрессией.

bn+1 = bn q

где q – знаменатель прогрессии

геометрическая прогрессия

Задание OM1407 К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?

Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

Рассмотрим данные:

2008 г – 38100 человек

2012 г — ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn.. , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

Ответ: 40860

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1406 Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?

Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn=b1(qn1)q1.., где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2(2n1)21..>30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n-1)>30000; делим обе части на 2: 2n-1>15000; переносим 1 в правую часть и получим: 2n>15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210=1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214=16384, где 16384<15001. Следовательно, наш ответ 14 минут.

Ответ: 14

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1405 В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?

В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn.. , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d=a12a7127..; d=852777127..=15. Теперь по этой же формуле найдем а25, связывая его с а12: d=a25a122512..; 15=a2585213..; найдем отсюда а25, а25=15∙13+852=1047.

Ответ: 1047

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1404 Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.

В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn=а1+аn2..n, куда мы и подставим все данные: 176=6+а112..11.

Разделим обе части на 11, получим 16= 6+а112.. ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

Ответ: 26

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1403 Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?

Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

Ответ: 5

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1402 Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.

Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn=а1+аn2..n, имеем 60=7,5  n2... Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

Ответ: 16

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1401 При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.

При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Ответ: 1,4

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1206o Выписаны первые три члена геометрической прогрессии: 1512; –252; 42; … Найдите сумму первых четырёх ее членов.
Сумму произвольного кол-ва членов геометрич.прогрессии будем искать по формуле: 1-й член прогрессии известен из условия и равен b1=1512. Требуемое число членов n=4. Знаменатель прогрессии найдем как частное двух соседних членов прогрессии (2-го и 1-го или 3-го и 2-го и т.д.). Найдем его так: По условию b2=–252, b3=42, поэтому Отсюда получаем:
Ответ: 1295

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1205o Геометрическая прогрессия (bn) задана условиями:

b1=–2, bn+1=2bn.

Найдите b7.
Искомый 7-й член прогрессии b7 будем искать по формуле:

b7=b1·q6.    (1)

Здесь b1 по условию дано, а знаменатель q нет. Но его можно определить, исходя из определения этой величины. Согласно определению, q=bn+1/bn. Используя второе условие задачи, получим, что q=2. Теперь используем 1-е условие задачи (b1=–2) и найдем искомую величину по формуле (1):

b7=–2·26=–2·64=–128.

Ответ: -128

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1204o В последовательности чисел первое число равно 6, а каждое следующее больше предыдущего на 4. Найдите пятнадцатое число.

В данном задании нас проверяют на знание формулы арифметической прогрессии:

e7e1e680f87d6cad66c925b184e2054d

где n — номер члена прогрессии, d — разность, а а1 — первый член.

Решение:

Подставим в общую формулу известные из условия значения:

d = 4,

а1 = 6,

n = 15,

получим:

a15 = 6 + (15 — 1) • 4

вычислив, получаем значение 15 члена:

a15 = 62

Ответ: 62

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1203o Выписаны первые несколько членов арифметической прогрессии:  10, 6, 2, … Найдите 101 член.

Для решения данной задачи воспользуемся формулой, задающей арифметическую прогрессию:

an = a1 + (n-1) • d

В нашем случае:

a1 = 10

d = 6 — 10 = -4

Подставляем значения в формулу:

a101 = 10 + (101-1) • (-4) = -390

Ответ: -390

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1202o

Выписано несколько последовательных членов геометрической прогрессии:

-1, x, -49, -343, ….

Найдите x.

Для того, чтобы найти x, необходимо вначале вычислить знаменатель прогрессии — для этого необходимо разделить последующий член на предыдущий:

-343 / -49 = 7

Затем, зная знаменатель прогрессии мы можем найти x, разделив последующий член (-49) на уже известный знаменатель 7.

x = -49 / 7 = -7

Ответ: -7

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1201o

Дана арифметическая прогрессия a(n) в которой

a (3) = 6,9

a (16) = 26,4

Найдите разность прогрессии.

Чтобы найти разность прогрессии в нашем случае, нужно разделить разницу между значениями членов прогрессии на количество членов (в нашем случае — это между 3 и 16).

Находим разницу между значениями  a (3) и a (16):

a (3) — a (16) = 26,4 — 6,9 = 19,5

Находим количество членов:

16 — 3 = 13

Находим разность прогрессии:

19,5 / 13 = 1,5

Ответ: 1,5

pазбирался: Даниил Романович | обсудить разбор | оценить


Ирина | 👀 6.5k | 📄 Скачать PDF |

5 комментариев

  1. почему 2 части нет это самые трудные задания если это возможно пожалуйста укажите 2 часть тоже .заранее спасибо

  2. Спасибо Вам огромное! Вы даже не представляете, как вы помогли мне.Спасибо ещё раз!

  3. СПАСИБИЩЕ ГРОМАДНОЕ!! ТОТ ЧЕЛОВЕЧИЩЕ, КОТОРЫЙ ВСЕ ЭТО ПИСАЛ, ЗНАЙТЕ, ЧТО ВЫ З О Л О Т О!

Добавить комментарий



Ваш адрес email не будет опубликован. Обязательные поля помечены *