Задание №13 ОГЭ по математике

неравенства и системы неравенств
Первичный бал: 1 Сложность (от 1 до 3): 3 Среднее время выполнения: 5 мин.

В задании №13 проверяется умение решать уравнения, неравенства и их системы. Конечно, под такие слова подходит огромный спектр заданий. Уточнение, пожалуй, одно. Надо применять графическое представление решения и показа результатов этого решения. В демонстрационном варианте ОГЭ предложена система двух линейных неравенств и графические представления вариантов ответов. Полезно понимать, что главным здесь является решение конкретных неравенств и понимание геометрического смысла полученного решения.

Теория к заданию №13

Определение:

Неравенством называется выражение вида:
a < b (a ≤ b), a > b (a ≥ b)

неравенства

Полезным для нас окажется метод интервалов:

метод интервалов

Задание 13OM21R

Укажите решение неравенства 8х – х20
  1. [0; +)
  2. [8; +)
  3. [0; 8]
  4. (-;0][8;+)

8х – х20

Вынесем -х за скобки: -х(-8 + х) 0

Теперь разделим на -1, не забывая изменить знак неравенства на противоположный: х(х – 8) 0

Найдем нули функции, приравняв каждый множитель к нулю: х=0 и х – 8=0, найдем х из второго уравнения: х=8.

Итак, имеем нули функции 0 и 8.

Теперь расставляем их на числовом луче и решаем неравенство методом интервалов.

C:\Users\Учитель\Desktop\луч 5.jpg

Теперь находим промежуток чисел, соответствующий неравенству х(х – 8) 0, т.е. промежуток отрицательных или равных нулю чисел. Это будет промежуток [0; 8]

В соответствии с его номером, это будет ответ под №3.

Ответ: 3

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1506o

Укажите неравенство, решение которого изображено на рисунке.


Тут нужно сразу отметить два важных момента.

  1. Графическим решением неравенств из вариантов ответа является парабола, которая пересекает координатную ось в точках, соответствующих корням неравенств.
  2. Так как все неравенства, представленные в вариантах ответов, имеют нестрогий знак, то точки пересечения корней неравенства с координатной осью будут закрашенными, т.е. входящими в искомые промежутки (решения).

Анализируем неравенства.

1) х2–36≤0

х2≤36

Корни этого неравенства равны ±6. Поскольку знак неравенства «меньше», то для ответа следует взять ту часть параболы, которая располагается ниже коорд.оси. Получаем:

Полученный промежуток-решение не соответствует заданному в качестве ответа в условии.

2) х2+36≥0

    х2≥–36

Это неравенство не имеет решений, поскольку для получения решения здесь требуется извлечь корень из отрицательные числа (из –36), а это невозможно.

3) х2–36≥0

    х2≥36

Корни неравенства – ±6. Т.к. знак неравенства «больше», то для ответа следует взять ту часть параболы, которая располагается выше координатной оси. Получаем:

Здесь мы получили полное совпадение полученного решения с тем, которое представлено в условии задания.

4) х2+36≤0

    х2≤–36

Тут ситуация такая же, как и во 2-м неравенства. Решений оно не имеет.

Ответ: 3

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1505o

Укажите решение неравенства:


Выполняем тождественные преобразования неравенства и приводим его к простейшему виду. Для этого сначала группируем слагаемые, перенося те, что с «х», в левую сторону, а свободные члены в правую:

4х–6х≥–2–5

Приводим подобные:

–2х≥–7

Находим х. Знак неравенства при этом поменяется на противоположный, поскольку делить будем на –2, т.е. на отрицательное число:

х≤3,5

Далее на коорд.прямой теперь нужно отложить точку со значением 3,5, причем точка будет закрашенная, т.к. знак неравенства нестрогий:

Т.к. знак полученного неравенства «≤», то выделить следует часть прямой слева от точки 3,5:

Это графическое решение соответствует ответу под №2.

Ответ: 2

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1504o

Решите систему неравенств:81 На каком рисунке изображено множество её решений? 82

Итак, решим систему неравенств — оставим х в левой части, а остальное перенесём в правую, получим:

х ≤ 0 -2,6

х ≥ 1 — 5

Вычислив, получаем ответ:

х ≤  -2,6

х ≥ -4

Найдем его на координатной прямой — это №2.

Ответ: 2

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1503o

Укажите множество системы неравенств:

⌈ x - 4 ≥ 0

⌊ x - 0,3 ≥ 1


Решение системы линейных неравенств сводится к решению линейного неравенства с дальнейшим анализом промежутков. В начале действуем аналогично первому случаю: переносим числа в правую часть, оставляя x слева:

⌈ x ≥ 4

⌊ x ≥ 1,3

В отличие от первого примера, решение более простое, но в данном случае нужно сравнить промежутки и выбрать общий. Первое неравенство требует, чтобы  x был больше 4, а второе — более 1,3, на координатной прямой это будет выглядеть следующим образом:

Решение 8 задания ОГЭ по математике

Промежутки перекрывают друг друга начина с 4, значит ответ выглядит следующим образом (не забываем, что неравенство нестрогое):

[ 4 ; + ∞ )  или

Решение 8 задания ОГЭ по математике

Ответ: [4 ;+∞ )

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1502o

Укажите множество решений неравенства: 7 x - x2 < 0


Существуют несколько способов решения квадратных неравенств, но я приведу самый простой и надежный. В начале выносим x за скобку, так как это неполное квадратное неравенство:

x ( 7 — x ) < 0

Затем находим ноли функции x ( 7 — x ) = 0, приравнивая каждый множитель к нолю:

x = 0

7 — x = 0

Получаем:

x = 0

x = 7

Таким образом, мы получили три интервала:

( -∞ ; 0 )

( 0 ; 7 )

( 7 ; +∞)

Подставим любое значение x из первого интервала и посмотрим на получившийся ответ.

Подставим -1:

x ( 7 — x ) =  — 1 ( 7 — (-1) ) = -8

Значение отрицательно, значит в интервале ( -∞ ; 0 ) функция отрицательна, что нам и подходит для ответа, так как в условии:

x ( 7 — x ) < 0

Подставим 1:

x ( 7 — x ) = 1 ( 7 — 1 ) = 6

Значение положительно, и промежуток ( 0 ; 7 ) нам не подходит.

Подставим 8:

x ( 7 — x ) = 8 ( 7 — 8 ) = — 8

Значение отрицательно, и это подходит под условия, следовательно ответ:

( -∞ ; 0 ) и ( 7 ; +∞)

или графически:

Решение 8 задания ОГЭ по математике

Ответ: (-∞;0) и (7;+∞)

pазбирался: Базанов Даниил | обсудить разбор

Задание OM1501o

Укажите решение неравенства: 2 x - 3 ( x - 7) ≤ 3

Для решения линейного неравенства достаточно выполнить действия, аналогичные действию решений линейных уравнений. Однако, в отличие от линейных уравнений следует проявлять внимательность при выполнении операций деления или умножения на отрицательное число — в этих случаях знак неравенства будет меняться на противоположный!

Для решения этого примера вначале раскроем скобки, не забывая, что -3 умножается на -7 и дает  + 21:

2 x — 3 x + 21 ≤ 3

Затем приводим подобные, перенося числа в правую сторону:

2 x — 3 x ≤ 3 — 21

— x ≤ -18

Нам необходимо умножить неравенство на -1, чтобы получить диапазон x, не забывая, что при этом меняется знак неравенства:

x ≥ 18

Таким образом, мы получаем, что x должен быть больше либо равен 18.

Ответ: [18;+∞)

pазбирался: Базанов Даниил | обсудить разбор


👀 37.4k