Обратное число обыкновенной дроби
Когда ищем обратное число для обыкновенной дроби, то делить ее на 1 не очень удобно, так как запись получается громоздкой. В этом случае гораздо проще поступать иначе: дробь просто переворачиваем, меняя местами числитель и знаменатель. Если дана правильная дробь, то после переворачивания получается дробь неправильная, то есть такая, из которой можно выделить целую часть. Делать это или нет, решать нужно в каждом конкретном случае особо. Так, если с полученной перевернутой дробью далее придется совершать какие-то действия (к примеру, умножение или деление), то выделять целую часть не стоит. Если же полученная дробь – это конечный результат, то, возможно, выделение целой части и желательно.
Обратное число десятичной дроби
Если требуется найти обратное число к десятичной дроби, то следует воспользоваться первым правилом (деление 1 на число). В этой ситуации можно действовать одним из двух способов. Первый – просто разделить 1 на это число в столбик. Второй – сформировать дробь из 1 в числителе и десятичной дроби в знаменателе, а затем домножить числитель и знаменатель на 10, 100 или другое число, состоящее из 1 и такого количества нулей, которое необходимо, чтобы избавиться от десятичной запятой в знаменателе. В результате будет получена обыкновенная дробь, которая и является результатом. При необходимости ее может понадобиться сократить, выделить из нее целую часть или перевести в десятичный вид.
Свойства обратных чисел
Ограничение связано с тем, что нельзя делить на 0, а при определении обратного числа для нуля его как раз придется переместить в знаменатель, то есть фактически делить на него.
Вот именно ссылки на эту статью не хватало в статье «Движение по окружности с постоянной по модулю скоростью».
Если кто из администрации увидит, то можно было бы добавить примечание около подраздела «Период и частота — это обратные величины, определяемые формулами:».