Функция. Зависимые и независимые переменные. Область определения и область значений функции. | теория по математике 🎲 функции

Определение понятия функции. Переменные.

Определение

Зависимость переменной у от переменной х, при которой любому значению переменной х соответствует единственное значение переменной у, называют функцией.

  • х – это независимая переменная, ее называют аргумент.
  • у – это зависимая переменная.

Ключевое слово, которое нужно запомнить в определении функции – это зависимость.

Например, человек идет на деловую встречу, но чувствует, что он опаздывает. Он ускоряет свой шаг, потому что от его скорости зависит время. Чем быстрее он двигается, тем меньше времени уйдет у него на дорогу. То есть время зависит от скорости.

Или, например, спортсмен метает ядро на дальнее расстояние. Чем сильнее будет бросок, тем дальше полетит ядро. Скорость полета зависит от силы толчка. Здесь опять прослеживается зависимость.

Функцию коротко записывают так: y = f(x). Вместо буквы f может быть использована и другая буква. Чтение данной записи следующее: «у равно f от х».

Например, функция задана формулой у = – 3х2 – 7. Равносильная ей запись такая: f(x)= – 3х2 – 7.

Пример 1. Найти значение функции f(x)= – 3х2 – 7 для значений аргумента, равных –5 и 4.

Подставим в формулу вместо х значения, сначала (-5), а затем 4

f (–5) = – 3.(–5)2 – 7 = –75–7 = –82

f (4) = – 3.(4)2 – 7 = – 48 – 7 = –55

Пример 2. Найти значение х, при котором функция, заданная формулой f (х) = 3х+2, принимает значение равное 5.

Так как дано, что значение равно 5, то значит f (х) = 5, составим и решим уравнение: 5=3х + 2

выполним перенос слагаемого 2 в левую часть, изменяя при этом знак: 5 – 2 = 3х

приведем подобные слагаемые в левой части уравнения: 3 = 3х

найдем неизвестный множитель делением: х = 1

Ответ: х=1.

Области определения и значения функции

Определение

Все возможные значения независимой переменной (х) называют областью определения функции.

Все значения, которые принимает зависимая переменная (у) называют областью значений функции.

Если какая-либо функция у=f(x) задана формулой, а при этом ее область определения не указана, то считается, что она состоит из любых значений переменной, при которых выражение имеет смысл.

Области определения и значений школьных функций

1. Для линейной функции областью определения будет являться любое число.

Если у такой функции k≠0, то областью ее значений также будет являться любое число.

При k=0 область значений этой функции состоит из единственного числа b.

Например, функция задана формулой у = 7. Тогда ее область значения — это число 7, а область определения – любое число.

2. Гипербола задается формулой вида y = k/x.

Область определения такой функции – любое число, кроме нуля.

Область значений такой функции – аналогичная.

3. Функция, заданная формулой y= |x|, имеет область определения – любое число.

4. У функций у = х2  и у = х3 область определения  – любое число.

Для того чтобы понимать, как находится область определения функции и рассмотреть примеры заданий на нахождение области определения функции, вспомним правила, при которых существуют ограничения и выражение не имеет смысл: нельзя делить на нуль; нельзя извлекать квадратный корень из отрицательного числа.

Пример 3. Рассмотрим, как находится область определения функций, которые заданы следующими формулами:

  • у = 5х + 2

Данное выражение будет иметь смысл при любом значении х, так как все действия здесь выполнимы. Например, подставив нуль, получим, что 5×0 + 2 = 2. Также при любых отрицательных или положительных значениях х выражение будет иметь смысл.

  • у = – 8х2 – 4

Данное выражение содержит степень. Все действия здесь так же выполнимы при любом значении х.

  • у = 87/(х + 11)

В знаменателе этого выражения содержится переменная х, поэтому надо проверить, при каком значении он может быть равным нулю и исключить это значение из области определения, так как на знаменатель делят, а на нуль делить нельзя.

Итак, имеем знаменатель х + 11. Приравниваем его к нулю, получаем х + 11 = 0. Решаем простое уравнение на нахождение неизвестного слагаемого и получаем х= – 11. Это число исключаем из области определения функции.

  • у = √х

Выражение содержит квадратный корень из переменной х.  Знаем, что он может извлекаться только из положительного или равного нулю числа. Поэтому область определения будет х≥0.

Ответ: (1) и (2) – множество всех чисел; (3) – любое число, кроме (-11) или х ≠ – 11; (4) х ≥0.

Нахождение области определения функции
  1. Если выражение целое и не содержит квадратного корня, то оно имеет смысл при любом значении независимой переменной. Следовательно, областью определения будет являться множество всех чисел.
  2. Если выражение дробное, то необходимо исключить те значения, которые обращают знаменатель в нуль. Для этого знаменатель дроби приравнять к нулю и решить полученное уравнение. Областью определения будут являться все числа, кроме тех, которые получились при решении уравнения.
Текст: Базанов Даниил, 18k 👀

Вся теория

Натуральные числаОтношение чиселОбратные числаОбыкновенные дробиДесятичные дробиПеревод обыкновенной дроби в десятичную и наоборотБесконечные дроби и иррациональные числаОкругление чиселДействия с рациональными числамиДействия со степенямиЧисловые и буквенные выражения. Порядок действий.Одночлен и его стандартный видМногочлены. Действия с многочленами.Формулы сокращенного умножения. Разложение на множители.Алгебраические дробиЛинейное уравнениеНеполные квадратные уравненияКвадратное уравнение. Дискриминант. Теорема Виета.Биквадратные уравненияЧисловые неравенства и их свойстваЛинейные неравенства с одной переменнойКвадратные неравенства с одной переменнойМетод интерваловЧисловая последовательностьАрифметическая прогрессия и сумма ее членовГеометрическая прогрессия и сумма ее членовСвойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.Линейная функция, ее свойства и графикПарабола, график, вершина, нули.Гипербола. График функции и свойства.Угол. Биссектриса. Виды углов.Прямая. Параллельные и перпендикулярные прямые.Плоскость. Прямая. Луч. Отрезок. Серединный перпендикуляр.Треугольник. Медиана, биссектриса, высота, средняя линия.Равнобедренный и равносторонний треугольникиПрямоугольный треугольник. Теорема Пифагора.Признаки равенства треугольниковНеравенство треугольникаОкружность и кругВписанные и центральные углы, их свойстваОписанная и вписанная окружностьЧетырехугольникиУмножение и его свойстваШкала. Координатный луч.Многоугольники. Равные фигуры.Прямоугольный параллелепипед и его объем. Пирамида.ВПР по Математике 8 классВПР по математике 7 классВПР по математике 6 классВПР по математике 5 класс