Многоугольник называют и обозначают по его вершинам последовательно, начиная с любой, т.е. имеем многоугольник АВСД. Можно назвать его ВСДА. Второй многоугольник – шестиугольник А1А2А3А4А5А6, т.е. он имеет 6 сторон, 6 вершин, 6 углов.
Фигура, изображенная на рисунке 2, не является многоугольником, так как её звенья АВ и СД пересекаются.
Обычно многоугольники называют по числу его углов, например, пятиугольник, восьмиугольник и т.д. Периметром многоугольника называют сумму длин всех его сторон.
Многоугольники называются равными, если они совпадают при наложении. Также и две фигуры называются равными, если они совпадают при наложении. Виды равных многоугольников и фигур приведены на рисунке 3.
Если соединить две несоседние вершины многоугольника, то получим отрезок, который называется диагональю многоугольника. Так, на рисунке 4 показаны диагонали АС и ВД.
На рисунке 5 показаны все диагонали, проведенные из одной вершины А семиугольника ABCDEFK. Это диагонали AC, AD, AE, AF. Также можно провести еще по 4 диагонали из каждой другой вершины этого многоугольника.